Taiwanese Journal of Mathematics

NONLOCAL CAUCHY PROBLEM FOR SECOND ORDER INTEGRODIFFERENTIAL EVOLUTION EQUATIONS IN BANACH SPACES

K. Balachandran and J.-H. Kim

Full-text: Open access

Abstract

In this paper we derive a set of sufficient conditions for the existence of mild solutions of second order nonlinear integrodifferential evolution equations with nonlocal conditions in Banach spaces. The results are obtained by applying the Schaefer fixed point theorem. An application is provided to illustrate the technique.

Article information

Source
Taiwanese J. Math., Volume 11, Number 5 (2007), 1343-1357.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500404868

Digital Object Identifier
doi:10.11650/twjm/1500404868

Mathematical Reviews number (MathSciNet)
MR2368653

Zentralblatt MATH identifier
1162.34047

Subjects
Primary: 34G20: Nonlinear equations [See also 47Hxx, 47Jxx]

Keywords
existence of solutions second order evolution equation integrodifferential equations Schaefer's theorem

Citation

Balachandran, K.; Kim, J.-H. NONLOCAL CAUCHY PROBLEM FOR SECOND ORDER INTEGRODIFFERENTIAL EVOLUTION EQUATIONS IN BANACH SPACES. Taiwanese J. Math. 11 (2007), no. 5, 1343--1357. doi:10.11650/twjm/1500404868. https://projecteuclid.org/euclid.twjm/1500404868


Export citation