Taiwanese Journal of Mathematics

EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR A KIND OF FIRST ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH A DEVIATING ARGUMENT

Bingwen Liu and Lihong Huang

Full-text: Open access

Abstract

In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of $T$-periodic solutions for the first order neutral functional differential equation with a deviating argument of the form \[ (x(t) + Bx(t-\delta))' = g_1(t,x(t)) + g_2(t, x(t-\tau(t))) + p(t). \]

Article information

Source
Taiwanese J. Math., Volume 11, Number 2 (2007), 497-510.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500404704

Digital Object Identifier
doi:10.11650/twjm/1500404704

Mathematical Reviews number (MathSciNet)
MR2333361

Zentralblatt MATH identifier
1138.34034

Subjects
Primary: 34C25: Periodic solutions 34D40

Keywords
first order neutral functional differential equations deviating argument periodic solutions coincidence degree

Citation

Liu, Bingwen; Huang, Lihong. EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR A KIND OF FIRST ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH A DEVIATING ARGUMENT. Taiwanese J. Math. 11 (2007), no. 2, 497--510. doi:10.11650/twjm/1500404704. https://projecteuclid.org/euclid.twjm/1500404704


Export citation