Taiwanese Journal of Mathematics

SOME NEW RESULTS ABOUT A SYMMETRIC $D$-SEMICLASSICAL LINEAR FORM OF CLASS ONE

Lotfi Khériji

Full-text: Open access

Abstract

We establish some properties concerning the linear form $\mathcal{B}[\nu]$ which is symmetric $D$-semiclassical of class 1. An integral representation is obtained. A connection with the $D$-classical Bessel one is discussed.

Article information

Source
Taiwanese J. Math., Volume 11, Number 2 (2007), 371-382.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500404695

Digital Object Identifier
doi:10.11650/twjm/1500404695

Mathematical Reviews number (MathSciNet)
MR2333352

Zentralblatt MATH identifier
1137.42006

Subjects
Primary: 42C05: Orthogonal functions and polynomials, general theory [See also 33C45, 33C50, 33D45] 33C45: Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [See also 42C05 for general orthogonal polynomials and functions]

Keywords
semiclassical orthogonal polynomials integral representation

Citation

Khériji, Lotfi. SOME NEW RESULTS ABOUT A SYMMETRIC $D$-SEMICLASSICAL LINEAR FORM OF CLASS ONE. Taiwanese J. Math. 11 (2007), no. 2, 371--382. doi:10.11650/twjm/1500404695. https://projecteuclid.org/euclid.twjm/1500404695


Export citation