Taiwanese Journal of Mathematics

NORMALIZED MATCHING PROPERTY OF A CLASS OF SUBSPACE LATTICES

Jun Wang and Huajun Zhang

Full-text: Open access

Abstract

Let $V_n(q)$ be the $n$-dimensional vector space over the finite field with $q$ elements and $K$ a selected $k$-dimensional subspace of $V_n(q)$. Let $C[n,k,t]$ denote the set of all subspaces $S$’s such that $\dim (S \cap K) \geq t$. We show that $C[n,k,t]$ has the normalized matching property, which yields that $C[n,k,t]$ has the strong Sperner property and the LYM property.

Article information

Source
Taiwanese J. Math., Volume 11, Number 1 (2007), 43-50.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500404632

Digital Object Identifier
doi:10.11650/twjm/1500404632

Mathematical Reviews number (MathSciNet)
MR2304003

Zentralblatt MATH identifier
1135.05073

Subjects
Primary: 05D05: Extremal set theory 06A07: Combinatorics of partially ordered sets

Keywords
poset subspace lattice Sperner property normalized matching property

Citation

Wang, Jun; Zhang, Huajun. NORMALIZED MATCHING PROPERTY OF A CLASS OF SUBSPACE LATTICES. Taiwanese J. Math. 11 (2007), no. 1, 43--50. doi:10.11650/twjm/1500404632. https://projecteuclid.org/euclid.twjm/1500404632


Export citation