Taiwanese Journal of Mathematics

MILOVANOVIĆ-PEČARIĆ-FINK INEQUALITY FOR DIFFERENCE OF TWO INTEGRAL MEANS

J. Pečarić and A. Vukelić

Full-text: Open access

Abstract

In this paper we show some generalizations of estimations of difference of two integral means, Milovanović-Pečarić-Fink inequality.

Article information

Source
Taiwanese J. Math., Volume 10, Number 4 (2006), 933-947.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500403885

Digital Object Identifier
doi:10.11650/twjm/1500403885

Mathematical Reviews number (MathSciNet)
MR2229633

Zentralblatt MATH identifier
1132.26370

Subjects
Primary: 26D15: Inequalities for sums, series and integrals 26D20: Other analytical inequalities 26D99: None of the above, but in this section

Keywords
ostrowski inequality Milovanović-Pečarić-Fink inequality

Citation

Pečarić, J.; Vukelić, A. MILOVANOVIĆ-PEČARIĆ-FINK INEQUALITY FOR DIFFERENCE OF TWO INTEGRAL MEANS. Taiwanese J. Math. 10 (2006), no. 4, 933--947. doi:10.11650/twjm/1500403885. https://projecteuclid.org/euclid.twjm/1500403885


Export citation

References

  • [4.] Lj. Dedić, J. Pe$\check{\rm c}$arić, and N. Ujević, On generaliations of Ostrowski inequality and some related results, Czechoslovak Math. J., 53(128) (2003), 173-189. \item [5.] A. M. Fink, Bounds of the deviation of a function from its avereges, Czechoslovak Math. J., 42(117) (1992), 289-310. \item [6.] M. Matić, J. Pe$\check{\rm c}$arić, Two-point Ostrowski inequality, Math. Inequal. Appl., 4 (2001), 215-221. \item [7.] G. V. Milovanović, and J. Pe$\check{\rm c}$arić, On generalizations of the inequality of A. Ostrowski and some related applications, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 544-576 (1976), 155-158. \item [8.] A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227. \item [9.] J. Pe$\check{\rm c}$arić, I. Perić, and A. Vukelić, Estimations of the difference of two integral means via Euler-type identities, Math. Inequal. Appl., (to appear).