Taiwanese Journal of Mathematics

SPACES OF CESÀRO DIFFERENCE SEQUENCES OF ORDER $r$ DEFINED BY A MODULUS FUNCTION IN A LOCALLY CONVEX SPACE

Mikail Et

Full-text: Open access

Abstract

The idea of difference sequence spaces was introduced by Kizmaz [12] and was generalized by Et and Colak [6]. In this paper we introduce and examine some properties of the sequence spaces $\left[ V,\lambda,f,p \right]_{0} \left( \Delta_{v}^{r},q \right)$, $\left[ V,\lambda,f,p \right]_{1} \left( \Delta_{v}^{r},q \right)$, $\left[ V,\lambda,f,p \right]_{\infty} \left( \Delta_{v}^{r},q \right)$, $S_{\lambda}(\Delta_{v}^{r},q)$ and give some inclusion relations on these spaces. We also show that the space $S_{\lambda}(\Delta_{v}^{r},q)$ may be represented as a $\left[ V,\lambda,f,p \right]_{1} \left( \Delta_{v}^{r},q \right)$ space. Furthermore, we compute Köthe-Toeplitz duals of the spaces of generalized Cesàro difference sequences spaces.

Article information

Source
Taiwanese J. Math., Volume 10, Number 4 (2006), 865-879.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500403878

Digital Object Identifier
doi:10.11650/twjm/1500403878

Mathematical Reviews number (MathSciNet)
MR2229627

Zentralblatt MATH identifier
1149.46008

Subjects
Primary: 40A05: Convergence and divergence of series and sequences 40C05: Matrix methods 46A45: Sequence spaces (including Köthe sequence spaces) [See also 46B45]

Keywords
difference sequence statistical convergence modulus function

Citation

Et, Mikail. SPACES OF CESÀRO DIFFERENCE SEQUENCES OF ORDER $r$ DEFINED BY A MODULUS FUNCTION IN A LOCALLY CONVEX SPACE. Taiwanese J. Math. 10 (2006), no. 4, 865--879. doi:10.11650/twjm/1500403878. https://projecteuclid.org/euclid.twjm/1500403878


Export citation

References

  • [1.] Y. Altin and M. Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math., 31(2) (2005), 233-243. \item[2.] R. Colak, On some generalized sequence spaces, Comm. Fac. Sci. Univ. Ankara Ser. A$_{\text{1}}$, Math. Statist., 38 (1-2) (1989), 35-46. \item[3.] J. S. Connor, The statistical and strong $p-$Cesàro convergence of sequences, Analysis, 8 (1988), 47-63. \item[4.] M. Et, Y. Altin and H. Altinok, On some generalized difference sequence spaces defined by a modulus function, Filomat, 17 (2003), 23-33. \item[5.] M. Et and M. Basarir, On some new generalized difference sequence spaces, Period. Math. Hungar., 35 (1997), 169-175. \item[6.] M. Et and R. Colak, On some generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377-386. \item[7.] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sci. Soc., 23 (2000), 25-32. \item[8.] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. \item[9.] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313. \item[10.] M. Işik, On statistical convergence of generalized difference sequences, Soochow J. Math. 30 (2004), 197-205. \item[11.] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Lecture Notes in Pure and Applied Mathematics, 65, Marcel Dekker Incorporated, New York, 1981. \item[12.] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-176. \item[13.] E. Kolk, The statistical convergence in Banach spaces, Tartu Ül., Toimetised, 928 (1991), 41-52. \item[14.] L. Leindler, Über die verallgemeinerte de la Vallée-Poussinsche Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar. 16 (1965), 375-387. \item[15.] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge, London and New York, 1970. \item[16.] I. J. Maddox, Sequence spaces defined by a modulus,\! Math.\! Proc.\! Cambridge Philos. Soc., 100 (1986), 161-166. \item[17.] E. Malkowsky and S. D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order $m$, Analysis, 17 (1997), 87-97. \item[18.] E. Malkowsky and E. Savas, Some $\lambda$-sequence spaces defined by a modulus, Arch. Math. $($Brno$)$, 36 (2000), 219-228. \item[19.] Mursaleen, $\lambda$-statistical convergence, Math. Slovaca, 50 (2000), 111-115. \item[20.] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978. \item[21.] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150. \item[22.] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85. Mathematical Notes, North-Holland Publishing Company, Amsterdam, 1984.