Taiwanese Journal of Mathematics

PERIODIC ASPECTS OF SEQUENCES GENERATED BY TWO SPECIAL MAPPINGS

Wun-Seng Chou and Peter J.-S. Shiue

Full-text: Open access

Abstract

Let $\beta = \frac{q}{p}$ be a fixed rational number, where $p$ and $q$ are positive integers with $2 \leq p \lt q$ and $\gcd(p,q) = 1$. Consider two real-valued functions $\sigma(x) = \beta^x \mod 1$ and $\tau(x) = \beta x \mod 1$. For each positive integer $n$, let $s(n) = \sigma(n) = \frac{s(n)_1}{p} + \dots + \frac{s(n)_n}{p^n}$ and $t(n) = \tau^n(1) = \frac{t(n)_1}{p} + \dots + \frac{t(n)_n}{p^n}$ be the $p$-ary representation. In this paper, we study the periods of both sequences $S_k = \{s(n + k)_n\}_{n=1}^{\infty}$ and $T_k = \{t(n + k)_n\}_{n=1}^{\infty}$ for any non-negative integer $k$.

Article information

Source
Taiwanese J. Math., Volume 10, Number 4 (2006), 829-836.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500403875

Digital Object Identifier
doi:10.11650/twjm/1500403875

Mathematical Reviews number (MathSciNet)
MR2229624

Zentralblatt MATH identifier
1189.11015

Subjects
Primary: 11B99: None of the above, but in this section

Keywords
congruence multiplicative order $p$-ary representation period sequence

Citation

Chou, Wun-Seng; Shiue, Peter J.-S. PERIODIC ASPECTS OF SEQUENCES GENERATED BY TWO SPECIAL MAPPINGS. Taiwanese J. Math. 10 (2006), no. 4, 829--836. doi:10.11650/twjm/1500403875. https://projecteuclid.org/euclid.twjm/1500403875


Export citation

References

  • R. L. Devaney, An Introduction to Chaotic Dynamical Systems, $2$nd Ed., Addison-Wesley, Redwood City, California, 1989.
  • M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, Vol. 1651, Springer-Verlag, Berlin-Heidelberg-New York, 1997.
  • L. Flatto, J. C. Lagarias and A. D. Pollington, On the range of fractional parts $\{\xi(p/q)^n\}$, Acta Arith., 70 (1995), 125-147.
  • K. Mahler, An unsolved problem on power of $3/2$, J. Austral. Math. Soc., 8 (1968), 313-321.
  • A. R$\acute{\mbox{e}}$nyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 472-493.
  • R. Tijdeman, Note on Mahler's $3/2$-problem, K. Norske Vid. Selsk. Skr., 16 (1972), 1-4.
  • T. Vijayaraghavan, On the fractional parts of the powers of a number, I, J. London Math. Soc., 15 (1940), 159-160.