Taiwanese Journal of Mathematics

CERTAIN COMBINATORIAL CONVOLUTION SUMS INVOLVING DIVISOR FUNCTIONS PRODUCT FORMULA

Daeyeoul Kim and Yoon Kyung Park

Full-text: Open access

Abstract

It is known that certain combinatorial convolution sums involving two divisor functions product formulae of arbitrary level can be explicitly expressed as a linear combination of divisor functions. In this article we deal with cases for certain combinatorial convolution sums involving three, four, six and twelve divisor functions product formula and obtain explicit expressions.

Article information

Source
Taiwanese J. Math., Volume 18, Number 3 (2014), 973-988.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499706452

Digital Object Identifier
doi:10.11650/tjm.18.2014.3608

Mathematical Reviews number (MathSciNet)
MR3213398

Zentralblatt MATH identifier
1357.11007

Subjects
Primary: 11A05: Multiplicative structure; Euclidean algorithm; greatest common divisors 11A25: Arithmetic functions; related numbers; inversion formulas 11F11: Holomorphic modular forms of integral weight

Keywords
convolution sums divisor functions

Citation

Kim, Daeyeoul; Park, Yoon Kyung. CERTAIN COMBINATORIAL CONVOLUTION SUMS INVOLVING DIVISOR FUNCTIONS PRODUCT FORMULA. Taiwanese J. Math. 18 (2014), no. 3, 973--988. doi:10.11650/tjm.18.2014.3608. https://projecteuclid.org/euclid.twjm/1499706452


Export citation

References

  • B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, New York, 1989.
  • B. Cho, D. Kim and H. Park, Evaluation of a certain combinatorial convolution sum in higher level cases, J. Math. Anal. Appl., 406 (2013), 203-210.
  • A. Dujella, K. Györy and Á. Pintér, On power values of pyramidal numbers, I. Acta Arith., 155(2) (2012), 217-226.
  • J. W. L. Glaisher, On the square of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math., 14 (1884), 156-163.
  • J. W. L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math., 15 (1885), 1-20.
  • J. W. L. Glaisher, Expressions for the five powers of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math., 15 (1885), 33-36.
  • D. Kim and A. Bayad, Convolution identities for twisted Eisenstein series and twisted divisor functions, Fixed Point Theory and Appl., 2013 (2013), 81.
  • D. Kim, A. Kim and A. Sankaranarayanan, Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions, Journal of Inequalities and Applications, 2013, p. 225.
  • S. Ramanujan, On certain arithmetical functions, Trans. Camb. Phil. Soc., 22 (1916), 159-184.
  • K. S. Williams, Number Theory in the Spirit of Liouville, Cambridge University Press, 2011.