Taiwanese Journal of Mathematics


Chuang-Xin Chen and Zong-Xuan Chen

Full-text: Open access


In this paper, we prove that for a transcendental entire function $f(z)$ of finite order such that $\lambda(f-a(z))\lt \sigma(f)$, where $a(z)$ is an entire function and satisfies $\sigma(a(z))\lt 1$, $n$ is a positive integer, if $\Delta_{\eta}^nf(z)$ and $f(z)$ share entire function $b(z)\,(\,b(z)\not\equiv a(z))$ satisfying $\sigma(b(z))\lt 1$ CM, where $\eta\,(\in\mathbb{C})$ satisfies $\Delta_{\eta}^nf(z)\not\equiv 0$, then $$f(z)=a(z)+ce^{c_1z},$$ where $c,\,c_1$ are two nonzero constants.

Article information

Taiwanese J. Math., Volume 18, Number 3 (2014), 711-729.

First available in Project Euclid: 10 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 39A10: Difference equations, additive 30D35: Distribution of values, Nevanlinna theory

complex difference meromorphic function Borel exceptional value sharing value


Chen, Chuang-Xin; Chen, Zong-Xuan. ENTIRE FUNCTIONS AND THEIR HIGHER ORDER DIFFERENCES. Taiwanese J. Math. 18 (2014), no. 3, 711--729. doi:10.11650/tjm.18.2014.3453. https://projecteuclid.org/euclid.twjm/1499706436

Export citation


  • R. Brück, On entire functions which share one value CM with their first derivative, Results Math., 30 (1996), 21-24.
  • W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc., 142 (2007), 133-147.
  • Z. X. Chen and K. H. Shon, On growth of meromorphic solutions for linear difference equations, Abstr. Appl. Anal., 2013 (2013), Article ID: 619296.
  • Z. X. Chen, Growth and zeros of meromorphic solutions of some linear difference equation, J. Math. Anal. Appl., 373 (2011), 235-241.
  • Z. X. Chen and K. H. Shon, Value distribution of meromorphic solutions of certain difference Painlev\ptmrsé equations, J. Math. Anal. Appl., 364 (2010), 556-566.
  • Z. X. Chen and K. H. Shon, On conjecture of R. Brück, concerning the entire function sharing one value CM with its derivative, Taiwan. J. Math., 8(2) (2004), 235-244.
  • Z. X. Chen, On the difference counterpart of Brück's conjecture, Acta Math. Sci. $($English Ser.$)$, to appear, ID: E12-436.
  • Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16 (2008), 105-129.
  • F. Gross, Factorization of Meromorphic Functions, U.S. Government Printing Office, Washington, D.C., 1972.
  • G. Gundersen, Meromorphic functions that share four values, Trans. Amer. Math. Soc., 277 (1983), 545-567.
  • G. Gundersen, Correction to Meromorphic functions that share four values, Trans. Amer. Math. Soc., 304 (1987), 847-850.
  • G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl., 223(1) (1998), 88-95.
  • R. G. Halburd and R. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31 (2006), 463-478.
  • J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and K. Tohge, Complex difference equations of Malmquist type, Comput. Methods Funct. Theory, 1 (2001), 27-39.
  • J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl., 355 (2009), 352-363.
  • J. Heittokangas, R. Korhonen, I. Laine and J. Rieppo, Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. Elliptic Equ., 56(1-4) (2011), 81-92.
  • W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  • I. Laine, Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993.
  • I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad., 83A (2007), 148-151.
  • I. Laine and C. C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc., 76(3) (2007), 556-566.
  • K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384-393.
  • S. Li and Z. S. Gao, Entire functions sharing one or two finite values CM with their shifts or difference operators, Arch. Math., 97 (2011), 475-483.
  • X., M., Li, C., Y., Kang, and, H.,X., Yi, Uniqueness, theorems, of, entire,functions, sharing, a nonzero complex number with their difference operators, Arch. Math., 96 (2011), 577-587.
  • R. Nevanlinna, Einige Eindentigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
  • J. M. Whittaker, Interpolatory Function Theory, Cambridge Tract No. 33, Cambridge University Press, 1935.
  • C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003.
  • L. Yang, Value Distribution Theory, Science Press, Beijing, 1993.