Taiwanese Journal of Mathematics

$E$-PROPER SADDLE POINTS AND $E$-PROPER DUALITY IN VECTOR OPTIMIZATION WITH SET-VALUED MAPS

Ke-Quan Zhao and Xin-Min Yang

Full-text: Open access

Abstract

In this paper, based on a kind of unified proper efficiency named as $E$-Benson proper efficiency, we present $E$-proper saddle points theorems and $E$-proper duality results including as weak duality and strong duality theorems of vector optimization problems with set-valued maps. Our main results unify and extend the cases of proper saddle points and proper duality as well as $\varepsilon$-proper saddle points and $\varepsilon$-proper duality.

Article information

Source
Taiwanese J. Math., Volume 18, Number 2 (2014), 483-495.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499706399

Digital Object Identifier
doi:10.11650/tjm.18.2014.3473

Mathematical Reviews number (MathSciNet)
MR3188516

Zentralblatt MATH identifier
1357.90148

Subjects
Primary: 90C26: Nonconvex programming, global optimization 90C29: Multi-objective and goal programming 90C30: Nonlinear programming

Keywords
vector optimization with set-valued maps $E$-Benson proper efficiency $E$-proper saddle points $E$-proper duality

Citation

Zhao, Ke-Quan; Yang, Xin-Min. $E$-PROPER SADDLE POINTS AND $E$-PROPER DUALITY IN VECTOR OPTIMIZATION WITH SET-VALUED MAPS. Taiwanese J. Math. 18 (2014), no. 2, 483--495. doi:10.11650/tjm.18.2014.3473. https://projecteuclid.org/euclid.twjm/1499706399


Export citation

References

  • \item[1.] S. S. Kutateladze, Convex $\varepsilon$-programming, Soviet Mathematics Doklady, 20 (1979), 391-393.
  • \item[2.] P. Loridan, $\varepsilon$-solutions in vector minimization problems, Journal of Optimization Theory and Applications, 43 (1984), 265-276.
  • \item[3.] I. Valyi, Approximate saddle-point theorems in vector optimization, Journal of Optimization Theory and Applications, 55 (1987), 435-448.
  • \item[4.] J. C. Liu, $\varepsilon$-Properly efficient solutions to nondifferentiable multiobjective programming problems, Applied Mathematics Letters, 12 (1999), 109-113.
  • \item[5.] J. Dutta and V. Vetrivel, On approximate minima in vector optimization, Numerical Functional Analysis and Optimization, 22 (2001), 845-859.
  • \item[6.] C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems, SIAM Journal on Optimization, 17 (2006), 688-710.
  • \item[7.] Y. Gao and X. M. Yang, Optimality conditions for approximate solutions of vector optimization problems, Journal of Industrial and Management Optimization, 7 (2011), 483-496.
  • \item[8.] M. Chicco, F. Mignanego, L. Pusillo and S. Tijs, Vector optimization problems via improvement sets, Journal of Optimization Theory and Applications, 150 (2011), 516-529.
  • \item[9.] K. Q. Zhao and X. M. Yang, A unified stability result with perturbations in vector optimization, Optimization Letters, doi: 10.1007/s11590-012-0533-1, 2012.
  • \item[10.] C. Gutiérrez, B. Jiménez and V. Novo, Improvement sets and vector optimization, European Journal of Operational Research, 223 (2012), 304-311.
  • \item[11.] K. Q. Zhao and X. M. Yang, $E$-Benson proper efficiency in vector optimization, Optimization, doi: 10.1080/02331934.2013.798321, 2013.
  • \item[12.] Z. F. Li, Benson proper efficiency in the vector optimization of set-valued maps, Journal of Optimization Theory and Applications, 98 (1998), 623-649.
  • \item[13.] G. Y. Chen and W. D. Rong, Characterizations of the Benson proper efficiency for nonconvex vector optimization, Journal of Optimization Theory and Applications, 98 (1998), 365-384.
  • \item[14.] W. D. Rong and Y. N. Wu, $\varepsilon$-Weak minimal solutions of vector optimization problems with set-valued maps, Journal of Optimization Theory and Applications, 106 (2000), 569-579.
  • \item[15.] K. Q. Zhao, X. M. Yang and J. W. Peng, Weak $E$-optimal solution in vector optimization, Taiwanese Journal of Mathematics, 17 (2013), 1287-1302.
  • \item[16.] W. D. Rong and Y. Ma, $\varepsilon$-Properly efficient solutions of vector optimization problems with set-valued maps, Operations Research Transactions, 4 (2000), 21-32.