## Taiwanese Journal of Mathematics

### ON VECTOR GENERALIZATIONS OF VANDERMONDE'S CONVOLUTION

Yao Lin Ong

#### Abstract

In this paper, we introduce the vector generalizations of the well-known Vandermonde's convolution such as \begin{align*} & \sum_{\boldsymbol{j} = \boldsymbol{\alpha_{1}} + \cdots + \boldsymbol{\alpha_{k}}} \sum_{\boldsymbol{\ell} = \boldsymbol{\beta_{1}} + \cdots + \boldsymbol{\beta_{k}}} \prod_{i=1}^{k} \binom{|\boldsymbol{\alpha_{i}}| + |\boldsymbol{\beta_{i}}|}{|\boldsymbol{\alpha_{i}}|} M(\boldsymbol{\alpha_{i}}) M(\boldsymbol{\beta_{i}}) \\ &= M(\boldsymbol{j}) M(\boldsymbol{\ell}) \binom{|\boldsymbol{j}| + |\boldsymbol{\ell}| + k -1}{|\boldsymbol{j}|, |\boldsymbol{\ell}|, k - 1}, \end{align*} where $\boldsymbol{j}$, $\boldsymbol{\ell}$, $\boldsymbol{\alpha_{i}}$ and $\boldsymbol{\beta_{i}}$ are the vectors with nonnegative integer components, and $M(\boldsymbol{j})$ is the multinomial coefficient defined by $\binom {j_1+j_2+ \cdots +j_m}{j_1,\ldots, j_m}$ with the value $\frac {|j|!}{j_1! \cdots j_m!}$. The main interest in such generalization comes from the number of multiple zeta values in relations produced from the shuffle product of two sets of multiple zeta values in their iterated integral representations over simplices. Several generalizations of Vandermonde's convolution type are given as well.

#### Article information

Source
Taiwanese J. Math., Volume 17, Number 5 (2013), 1677-1691.

Dates
First available in Project Euclid: 10 July 2017

https://projecteuclid.org/euclid.twjm/1499706232

Digital Object Identifier
doi:10.11650/tjm.17.2013.2440

Mathematical Reviews number (MathSciNet)
MR3106037

Zentralblatt MATH identifier
1287.40001

#### Citation

Ong, Yao Lin. ON VECTOR GENERALIZATIONS OF VANDERMONDE'S CONVOLUTION. Taiwanese J. Math. 17 (2013), no. 5, 1677--1691. doi:10.11650/tjm.17.2013.2440. https://projecteuclid.org/euclid.twjm/1499706232

#### References

• Richard Askey, Orthogonal polynomials and special functions, Regional Conference Series in Applied Mathematics, 21 (1975), Philadelphia, PA: SIAM, viii+110.
• J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lison\ptmrs ěk, Special values of multiple polylogarithms, Trans. Amer. Math. Soc., 353(3) (2001), 907-941.
• D. Bowman and D. M. Bradley, Multiple polylogarithms: a brief survey, Contemp. Math., 291 (2001), 71-92.
• M. Eie, T.-Y. Lee and Y. L. Ong, Applications of shuffle products of multiple zeta values in combinatorics, J. Comb. Number Theory, 4(3) (2012), 65-81.
• M. Eie, W.-C. Liaw and Y. L. Ong, A restricted sum formula among multiple zeta values, J. Number Theory, 129(4) (2009), 908-921.
• \labelbib14 M. Eie and C.-S. Wei, A short proof for the sum formula and its generalization, Arch. Math., 91(4) (2008), 330-338.
• L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol., 20 (1775), 140-186; (Reprinted in Opera Omnia, Ser. I, no. 15, 217-267, Teubner, Berlin, 1927).
• R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley Publishing Company, Reading, 1989.
• A. Granville, A decomposition of Riemann's zeta-function, Analytic Number Theory, Kyoto, 1996, 95-101, London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997.
• M. E. Hoffman, Multiple harmonic series, Pacific J. Math., 152(2) (1992), 275-290.
• T.-Y. Lee, Algebraic relations for multiple zeta values through shuffle product formulas, Ph.D. Dissertation, 2012.
• N. Nielsen, Die Gammafunktion, Band I; Handbuch der Theorie der Gammafunktion, Band II; Theorie des Integrallogarithmus und verwandter Transzendenten, 1906, Reprinted together as Die Gammafunktion, Chelsea Publishing Co., New York, 1965.
• Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory, 74(1) (1999), 39-43.
• J. Pitman, Probability, Springer-Verlag Inc., New York, 1993.