Taiwanese Journal of Mathematics

GAP FUNCTIONS AND GLOBAL ERROR BOUNDS FOR SET-VALUED MIXED VARIATIONAL INEQUALITIES

Nan-jing Huang and Guo-ji Tang

Full-text: Open access

Abstract

In this paper, we introduce some gap functions for set-valued mixed variational inequalities under suitable conditions. We further use these gap functions to study global error bounds for the solutions of set-valued mixed variational inequalities in Hilbert spaces. The results presented in this paper generalize and improve some corresponding known results in literatures.

Article information

Source
Taiwanese J. Math., Volume 17, Number 4 (2013), 1267-1286.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499706116

Digital Object Identifier
doi:10.11650/tjm.17.2013.2247

Mathematical Reviews number (MathSciNet)
MR3085510

Zentralblatt MATH identifier
1304.90207

Subjects
Primary: 90C25: Convex programming 90C33: Complementarity and equilibrium problems and variational inequalities (finite dimensions)

Keywords
mixed variational inequality gap function global error bound set-valued mapping

Citation

Huang, Nan-jing; Tang, Guo-ji. GAP FUNCTIONS AND GLOBAL ERROR BOUNDS FOR SET-VALUED MIXED VARIATIONAL INEQUALITIES. Taiwanese J. Math. 17 (2013), no. 4, 1267--1286. doi:10.11650/tjm.17.2013.2247. https://projecteuclid.org/euclid.twjm/1499706116


Export citation

References

  • J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser, Boston, 1990.
  • D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.
  • A. Chinchuluun, A. Migdalas, P. M. Pardalos and L. Pitsoulis, Pareto Optimality, Game Theory and Equilibria, Springer, Berlin, 2008.
  • G. Cohen, Nash equilibria: gradient and decomposition algorithms, Large Scale Syst., 12 (1987), 173-184.
  • A. Daniilidis and N. Hadjisavvas, Coercivity conditions and variational inequalities, Math. Program., 86 (1999), 433-438.
  • F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementary Problems I, II, Springer-Verlag, New York, 2003.
  • J. H. Fan and X. G. Wang, Gap functions and global error bounds for set-valued variational inequalities, J. Comput. Appl. Math., 233 (2010), 2956-2965.
  • M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program., 53 (1992), 99-110.
  • F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems and Variational Models, Kluwer, Boston, 2001.
  • W. Han and B. Reddy, On the finite element method for mixed variational inequalities arising in elastoplasticity, SIAM J. Numer. Anal., 32 (1995), 1778-1807.
  • Y. R. He, A new projection algorithm for mixed variational inequalities, Acta Math. Sci., 27A (2007), 215-220.
  • N. J. Huang, J. Li and S. Y. Wu, Gap functions for a system of generalized vector quasi-equilibrium problems with set-valued mappings, J. Glob. Optim., 41 (2008), 401-415.
  • N. J. Huang, J. Li and J. C. Yao, Gap functions and existence of solutions for a system of vector equilibrium problems, J. Optim. Theory Appl., 133 (2007), 201-212.
  • A. Kaplan and R. Tichatschke, Proximal point methods and nonconvex optimization, J. Glob. Optim., 13 (1998), 389-406.
  • T. Larsson and M. Patriksson, A class of gap functions for variational inequalities, Math. Program., 64 (1994), 53-79.
  • J. Li and N. J. Huang, An extension of gap functions for a system of vector equilibrium problems with applications to optimization problems, J. Glob. Optim., 39 (2007), 247-260.
  • J. Li and G. Mastroeni, Vector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functions, J. Optim. Theory Appl., 145 (2010), 355-372.
  • G. Li and K. F. Ng, On generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems, SIAM J. Optim., 20 (2009), 667-690.
  • K. F. Ng and L. L. Tan, Error bounds of regularized gap functions for nonsmooth variational inequality problems, Math. Program., 110 (2007), 405-429.
  • S. Nguyen and C. Dupuis, An efficient method for computing traffic equilibria in networks with asymmetric transportation costs, Transportation Sci., 18 (1984), 185-202.
  • M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.
  • M. V. Solodov, Merit functions and error bounds for generalized variational inequalities, J. Math. Anal. Appl., 287 (2003), 405-414.
  • M. V. Solodov and B. F. Svaiter, Error bounds for proximal point subproblems and associated inexact proximal point algorithms, Math. Program., 88 (2000), 371-389.
  • L. L. Tan, Regularized gap functions for nonsmooth variational inequality problems, J. Math. Anal. Appl., 334 (2007), 1022-1038.
  • J. H. Wu, M. Florian and P. Marcotte, A general descent framework for the monotone variational inequality problem, Math. Program., 61 (1993), 281-300.
  • K. Q. Wu and N. J. Huang, The generalized $f$-projection operator and set-valued variational inequalities in Banach spaces, Nonlinear Anal. TMA, 71 (2009), 2481-2490.
  • F. Q. Xia, N. J. Huang and Z. B. Liu, A projected subgradient method for solving generalized mixed variational inequalities, Oper. Res. Lett., 36 (2008), 637-642.
  • N. Yamashita and M. Fukushima, Equivalent uncontrained minimization and global error bounds for variational inequality problems, SIAM J. Control Optim., 35 (1997), 273-284.
  • H. Y. Yin, C. X. Xu and Z. X. Zhang, The F-complementarity problem and its equivalence with the least element problem, Acta Math. Sinica, 44 (2001), 679-686.
  • R. Y. Zhong and N. J. Huang, Stability analysis for Minty mixed variational inequality in reflexive Banach spaces, J. Optim. Theory Appl., 147 (2010), 454-472.