Taiwanese Journal of Mathematics

ALMOST $h$-SEMI-SLANT RIEMANNIAN MAPS

Kwang-Soon Park

Full-text: Open access

Abstract

As a generalization of slant Riemannian maps, semi-slant Riemannian maps, almost h-slant submersions, and almost h-semi-slant submersions, we introduce the notion of almost h-semi-slant Riemannian maps from almost quaternionic Hermitian manifolds to Riemannian manifolds. We investigate the integrability of distributions, the harmonicity of such maps, the geometry of fibers, etc. We also deal with the condition for such maps to be totally geodesic and study some decomposition theorems. Moreover, we give some examples.

Article information

Source
Taiwanese J. Math., Volume 17, Number 3 (2013), 937-956.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499705992

Digital Object Identifier
doi:10.11650/tjm.17.2013.2483

Mathematical Reviews number (MathSciNet)
MR3072270

Zentralblatt MATH identifier
1292.53019

Subjects
Primary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.) 53C26: Hyper-Kähler and quaternionic Kähler geometry, "special" geometry

Keywords
Riemannian map semi-slant angle integrable harmonic map totally geodesic

Citation

Park, Kwang-Soon. ALMOST $h$-SEMI-SLANT RIEMANNIAN MAPS. Taiwanese J. Math. 17 (2013), no. 3, 937--956. doi:10.11650/tjm.17.2013.2483. https://projecteuclid.org/euclid.twjm/1499705992


Export citation

References

  • P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, Oxford science publications, 2003.
  • B. Y. Chen, Differential geometry of real submaniflods in a Kähler manifold, Monatsh. Math., 91 (1981), 257-274.
  • B. Y. Chen, Slant immersions, Bull. Austral. Math. Soc., 41(1) (1990), 135-147.
  • B. Y. Chen, Geometry of slant submaniflods, Katholieke Universiteit Leuven, Leuven, 1990.
  • V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean supersymmetry 1, Vector multiplets, J. High Energy Phys., 03 (2004), 028.
  • J. Eells and J. M. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160.
  • A. E. Fischer, Riemannian maps between Riemannian manifolds, Contemporary Math., 132 (1992), 331-366.
  • M. Falcitelli, S. Ianus and A. M. Pastore, Riemannian submersions and related topics, World Scientific Publishing Co., 2004.
  • A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-737.
  • S. Ianus, R. Mazzocco and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta. Appl. Math., 104 (2008), 83-89.
  • B. O'Neill, The fundamental equations of a submersion, Mich. Math. J., 13 (1966), 458-469.
  • K. S. Park, H-slant submersions, Bull. Korean Math. Soc., 49(2) (2012), 329-338.
  • K. S. Park, H-semi-slant submersions, Preprint, 2011.
  • K. S. Park, Semi-slant Riemannian maps, arXiv:1208.5362v2 [math.DG].
  • K. S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., Accepted, arXiv:1201.0814v2 [math.DG].
  • B. Sahin, Invariant and anti-invariant Riemannian maps to Kahler manifolds, Int. J. Geom. Methods Mod. Phys., 7(3) (2010), 337-355.
  • B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome, 54(1)(102) (2011), 93-105.
  • B. Sahin, Slant Riemannian maps from almost Hermitian manifolds, arXiv:1206.3563v1 [math.DG].
  • B. Watson, Almost Hermitian submersions, J. Differential Geom., 11(1) (1976), 147-165.