Taiwanese Journal of Mathematics

PRODUCTS OF RADIAL DERIVATIVE AND MULTIPLICATION OPERATORS FROM F(p,q,s) TO WEIGHTED-TYPE SPACES ON THE UNIT BALL

Jie Zhou and Yongmin Liu

Full-text: Open access

Abstract

In this paper, we obtain the complete characterizations of the boundedness and compactness of the products of the multiplication and the radial derivative operator ${\cal R} M_u$ from $F(p,q,s)$ to weighted-type spaces on the unit ball.

Article information

Source
Taiwanese J. Math., Volume 17, Number 1 (2013), 161-178.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499705881

Digital Object Identifier
doi:10.11650/tjm.17.2013.2127

Mathematical Reviews number (MathSciNet)
MR3028863

Zentralblatt MATH identifier
1284.47027

Subjects
Primary: 47B38: Operators on function spaces (general) 47G10: Integral operators [See also 45P05] 32A10: Holomorphic functions 32A18: Bloch functions, normal functions

Keywords
unit ball general space weighted-type space radial derivative operator multiplication operator

Citation

Zhou, Jie; Liu, Yongmin. PRODUCTS OF RADIAL DERIVATIVE AND MULTIPLICATION OPERATORS FROM F(p,q,s) TO WEIGHTED-TYPE SPACES ON THE UNIT BALL. Taiwanese J. Math. 17 (2013), no. 1, 161--178. doi:10.11650/tjm.17.2013.2127. https://projecteuclid.org/euclid.twjm/1499705881


Export citation

References

  • K. L. Avetisyan, Hardy-Bloch type spaces and lacunary series on the polydisk, Glas. Math. J., 49(2) (2007), 345-356.
  • K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of anzlytic functions, J. Austr. Mathe. Soc., 54(1) (1993), 70-79.
  • X. Fu and X. Zhu, Weighted composition operators on some weighted spaces in the unit ball, Abstr. Appl. Anal., 2006 (2006), Article ID 605807, 8 pp.
  • Z. Hu, Extended Ces$\grave{\rm a}$ro operators on mixed norm spaces, Proc. Amer. Math. Soc., 131(7) (2003), 2171-2179, (electronic).
  • B. Li and C. Ouyang, Higher radial derivative of functions of $Q_p$ spaces and its applications, J. Math. Anal. Appl., 327(2) (2007), 1257-1272.
  • S. Li, Riemann-Stieltjes operators from $F(p, q, s)$ spaces to $\alpha$-Bloch spaces on the unit ball, J. Inequal. Appl., 2006 (2006), Article ID 27874, 14 pp.
  • S. Li and S. Stevi\' c, Composition followed by differentiation between Bloch type spaces, J. Comput. Anal. Appl., 9(2) (2007), 195-206.
  • S. Li and S. Stevi\' c, Composition followed by differentiation from mixed-norm spaces to $\alpha$-Bloch spaces, Sb. Math., 199(11/12) (2008), 1847-1857.
  • S. Li and S. Stevi\' c, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338(2) (2008), 1282-1295.
  • S. Li and S. Stevi\' c, Compactness of Riemann-Stieltjes operators between $F(p, q, s)$ and $\alpha$-Bloch spaces, Publ. Math. Debrecen, 72(1/2) (2008), 111-128.
  • S. Li and S. Stevi\' c, Composition followed by differentiation between $H^\infty$ and $\alpha$-Bloch spaces (English summary), Houston J. Math., 35(1) (2009), 327-340.
  • X. Liu and Y. Yu, The product of differentiation operator and multiplication operator from $H^\infty$ to Zygmund spaces, J. Xuzhou Norm. Univ. Nat. Sci. Ed., 29(1) (2011), 37-39.
  • Y. Liu, Boundedness of the Bergman type operators on mixed norm spaces, Proc. Amer. Math. Soc., 130(8) (2002), 2363-2367 (electronic).
  • Y. Liu and Y. Yu, Weighted differentiation composition operators from mixed-norm to Zygmund spaces, Numer. Funct. Anal. Optim., 31(8) (2010), 936-954.
  • Y. Liu and Y. Yu, On compactness for iterated commutators, Acta Math. Sci. Ser. B Engl. Ed., 31B(2) (2011), 491-500.
  • Y. Liu and Y. Yu, Composition followed by differentiation between $H^\infty$ and Zygmund spaces, Complex. Anal. Oper. Theory, 6(1) (2012), 121-137.
  • Y. Liu and J. Zhou, On an operator $M_u{\cal R}$ from mixed norm spaces to Zygmund-type spaces on the unit ball, Complex. Anal. Oper. Theory, DOI 10.1007/s11785-012-0237-7.
  • X. Lv and X. Tang, Extended Ces$\grave{\rm a}$ro operators from $F(p, q, s)$ spaces to Bloch-type spaces in the unit ball, Commun. Korean Math. Soc., 24(1) (2009), 57-66.
  • K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347(7) (1995), 2679-2687.
  • W. Rudin, Function Theory in the Unit Ball of $ \mathbb{C}^n$, Springer-Verlag, New York-Berlin, 1980.
  • A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc., 162 (1971), 287-302.
  • S. Stevi\' c, On an integral operator on the unit ball in $\mathbb{C}^{n}$, J. Inequal. Appl., 2005(1) (2005), 81-88.
  • S. Stevi\' c, Boundedness and compactness of an integral operator in a mixed norm space on the polydisc, Siberian Math. J., 48(3) (2007), 559-569.
  • S. Stevi\' c, On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. Math. Anal. Appl., 354(2) (2009), 426-434.
  • S. Stevi\' c, Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces, Appl. Math. Comput., 211(1) (2009), 222-233.
  • S. Stevi\' c, Products of composition and differentiation operators on the weighted Bergman space, Bull. Belg. Math. Soc. Simon Stevin, 16(4) (2009), 623-635.
  • S. Stevi\' c, Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball, Abstr. Appl. Anal., 2010 (2010), Article ID 801264, 14 pp.
  • S. Stevi\' c, Composition followed by differentiation from $H^\infty$ and the Bloch space to $n$th weighted-type spaces on the unit disk, Appl. Math. Comput., 216(12) (2010), 3450-3458.
  • S. Stevi\' c, Weighted differentiation composition operators from $H^\infty$ and Bloch spaces to $n$th weigthed-type spaces on the unit disk, Appl. Math. Comput., 216(12) (2010), 3634-3641.
  • S. Stevi\' c, On a product-type operator from Bloch spaces to weighted-type spaces on the unit ball, Appl. Math. Comput., 217(12) (2011), 5930-5935.
  • S. Stevi\' c, On some integral-type operators between a general space and Bloch-type spaces, Appl. Math. Comput., 218(6) (2011), 2600-2618.
  • S. Stevi\' c, Characterizations of composition followed by differentiation between Bloch-type spaces, Appl. Math. Comput., 218(8) (2011), 4312-4316.
  • S. Stevi\' c, Boundedness and compactness of an integral-type operator from Bloch-type spaces with normal weights to $F(p, q, s)$ space, Appl. Math. Comput., 218(9) (2012), 5414-5421.
  • S. Stevi\' c, Weighted radial operator from the mixed-norm space to the $n$th weighted-type space on the unit ball, Appl. Math. Comput., 218(18) (2012), 9241-9247.
  • S. Stevi\' c and A. K. Sharma, Iterated differentiation followed by composition from Bloch-type spaces to weighted BMOA spaces, Appl. Math. Comput., 218(7) (2011), 3574-3580.
  • X. Tang, Extended Ces$\grave{\rm a}$ro operators between Bloch-type spaces in the unit ball of $\mathbb{C}^n$, J. Math. Anal. Appl., 326(2) (2007), 1199-1211.
  • W. Yang, Products of composition and differentiation operators from $Q_K(p, q)$ spaces to Bloch-type spaces, Abstr. Appl. Anal., 2009 (2009), Article ID 741920, 14 pp.
  • W. Yang, Composition operators from $F(p, q, s)$ spaces to the $n$th weighted-type spaces on the unit disc, Appl. Math. Comput., 218(4) (2011), 1443-1448.
  • W. Yang, Generalized weighted composition operatora from $F(p, q, s)$ to the Bloch-type space, Appl. Math. Comput., 218(9) (2012), 4967-4972.
  • W. Yang and X. Meng, Generalized composition operators from $F(p, q, s)$ space to Bloch-type spaces, Appl. Math. Comput., 217 (2010), 2513-2519.
  • S. Ye, Weighted composition operator from the general function space $F(p, q, s)$ into logarithmic Bloch spaces, J. Korean Math. Soc., 45(4) (2008), 977-991.
  • Y. Yu, Volterra-type composition operators from logarithmic Bloch spaces into Bloch-type spaces, J. Xuzhou Norm. Univ. Nat. Sci. Ed., 27(3) (2009), 14-18.
  • X. Zhang, Multipliers on some holomorphic function spaces, Chinese Ann. Math. Ser. A, 26(4) (2005), 477-486.
  • X. Zhang and J. Xiao, Weighted composition operator between two analytic function spaces, Chinese Adv. Math., 35(4) (2006), 477-486.
  • X. Zhang, J. Xiao and Z. Hu, The multipliers between the mixed norm spaces in $\mathbb{C}^n$, J. Math. Anal. Appl., 311(2) (2005), 664-674.
  • R. Zhao, On a general family of function space, Ann. Acad. Sci. Fenn. Math. Dissertationes, 1996.
  • Z. Zhou and R. Chen, Weighted composition operators from $F(p, q, s)$ to Bloch type space, Int. Mod. Math., 3(3) (2008), 327-336.
  • K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Text in Mathematics 226, Springer, New York, 2005.
  • X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers type spaces (English summary), Integral Transforms Spec. Funct., 18(3/4) (2007), 223-231.
  • X. Zhu, Weighted composition operators from $F(p, q, s)$ spaces to $H_{\mu}^{\infty}$ spaces, Abstr. Appl. Anal., 2009 (2009), Article ID 290978, 14 pp.