Taiwanese Journal of Mathematics


Hadi Khatibzadeh and Sajad Ranjbar

Full-text: Open access


In this paper, we study the strong convergence of the Halpern type algorithms for a strongly quasi-nonexpansive sequence of operators. These results extend the results of Saejung [11]. Some applications in infinite family of firmly quasi-nonexpansive mappings, multiparameter proximal point algorithm, constraint minimization and subgradient projection are presented.

Article information

Taiwanese J. Math., Volume 19, Number 5 (2015), 1561-1576.

First available in Project Euclid: 4 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30] 47H09: Contraction-type mappings, nonexpansive mappings, A-proper mappings, etc. 47H05: Monotone operators and generalizations 47J05: Equations involving nonlinear operators (general) [See also 47H10, 47J25]

Halpern iteration fixed point strong convergence strongly quasi-nonexpansive sequence maximal monotone operator Halpern-Mann Proximal point algorithm


Khatibzadeh, Hadi; Ranjbar, Sajad. HALPERN TYPE ITERATIONS FOR STRONGLY QUASI-NONEXPANSIVE SEQUENCES AND ITS APPLICATIONS. Taiwanese J. Math. 19 (2015), no. 5, 1561--1576. doi:10.11650/tjm.19.2015.4700. https://projecteuclid.org/euclid.twjm/1499133724

Export citation


  • K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67 (2007), 2350-2360.
  • H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejer monotone methods in Hilbert space, Math. Oper. Res., 26 (2001), 248-264.
  • O. A. Boikanyo and G. Morosanu, A proximal point algorithm converging strongly for general errors, Optim. Lett., 4 (2010), 635-641.
  • R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math., 3 (1977), 459-470.
  • C. E. Chidume and C. O. Chidume, Iterative approximation of fixed points of nonexpansive mappings, J. Math. Anal. Appl., 318 (2006), 288-295.
  • K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.
  • B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.
  • P. E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236.
  • W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506- 510.
  • G. Morosanu, Nonlinear evolution equations and applications, Mathematics and Its Applications, Vol. 26, D. Reidel, Dordrecht, The Netherlands (1988).
  • S. Saejung, Halpern's iteration in Banach spaces, Nonlinear Anal., 73 (2010), 3431-3439.
  • S. Saejung, A supplement to a regularization method for the proximal point algorithm, J. Global Optim., 56 (2013), 121-129.
  • S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly mono-tone operators in Banach spaces, Nonlinear Anal., 75 (2012), 742-750.
  • T. Suzuki, A sufficient and necessary condition for Halpern-type strong convergence to the fixed point of nonexpansive mapping, Proc. Amer. Math. Soc., 135 (2007), 99-106.
  • F. Wang and H. Cui, On the contraction proximal point algorithms with multi parameters, J. Glob. Optim., 54 (2012), 485-491.
  • R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58 (1992), 486-491.
  • H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65 (2002), 109-113.
  • H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240-256.
  • I. Yamada and N. Ogura, Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Numer. Funct. Anal. Optim., 25 (2004), 619-655.
  • Y. Yao and N. Shazad, Strong convergence of a proximal point algorithm with general errors, Optim. lett., 6 (2012), 621-628.