Open Access
2015 QUARTIC RESIDUES AND SUMS INVOLVING $\binom{4k}{2k}$
Zhi-Hong Sun
Taiwanese J. Math. 19(3): 803-818 (2015). DOI: 10.11650/tjm.19.2015.4132

Abstract

Let $p$ be an odd prime and let $m\not\equiv 0\pmod p$ be a rational p-adic integer. In this paper we reveal the connection between quartic residues and the sum $\sum_{k=0}^{[p/4]}\binom{4k}{2k}\frac 1{m^k}$, where $[x]$ is the greatest integer not exceeding $x$. Let $q$ be a prime of the form $4k+1$ and so $q=a^2+b^2$ with $a,b\in\Bbb Z$. When $p\nmid ab(a^2-b^2)q$, we show that for $r=0,1,2,3$, $$ \begin{array}{ll} & \displaystyle p^{\frac{q-1}4} \equiv \Big(\frac ab\Big)^r\pmod q\\ & \displaystyle\Leftrightarrow \sum_{k=0}^{[p/4]}\binom{4k}{2k}\Big(\frac{a^2}{16q}\Big)^k\equiv(-1)^{\frac{p^2-1}8a+\frac{p-1}2\cdot \frac{q-1}4}\Big(\frac pq\Big) \Big(\frac ab\Big)^r\pmod p, \end{array} $$ where $(\frac pq)$ is the Legendre symbol. We also establish congruences for $\sum_{k=0}^{[p/4]}\binom{4k}{2k}\frac 1{m^k}\pmod p$ in the cases $m=17,18,20,32,52,80,272$.

Citation

Download Citation

Zhi-Hong Sun. "QUARTIC RESIDUES AND SUMS INVOLVING $\binom{4k}{2k}$." Taiwanese J. Math. 19 (3) 803 - 818, 2015. https://doi.org/10.11650/tjm.19.2015.4132

Information

Published: 2015
First available in Project Euclid: 4 July 2017

zbMATH: 1357.11006
MathSciNet: MR3353254
Digital Object Identifier: 10.11650/tjm.19.2015.4132

Subjects:
Primary: 11A07
Secondary: 11A15 , 11B39 , 11B65 , 11E25

Keywords: binary quadratic form , congruence , Lucas sequence , quartic reciprocity , quartic residue

Rights: Copyright © 2015 The Mathematical Society of the Republic of China

Vol.19 • No. 3 • 2015
Back to Top