Open Access
2015 A SHARP MAXIMAL INEQUALITY FOR A GEOMETRIC BROWNIAN MOTION
Cloud Makasu
Taiwanese J. Math. 19(2): 585-591 (2015). DOI: 10.11650/tjm.19.2015.2551

Abstract

Let $X=(X_t)_{t\geq0}$ be a geometric Brownian motion with drift $\mu$ and volatility $\sigma\gt 0$, and let $Y=(Y_t)_{t\geq0}$ be the associated maximum process of $X$. Under certain conditions, we prove a sharp maximal inequality for the geometric Brownian motion. The method of proof is essentially based on explicit forms of the following optimal stopping problem: Find a stopping time $\tau^*$, if it exists, such that \begin{eqnarray*} \Phi(x,y):=\sup_{\tau}\mathbf{E}^{x,y}\left[Y_\tau-c\int_0^\tau X^\theta_sds\right],\quad c,\theta\gt 0 \end{eqnarray*} where the supremum is taken over all stopping times $\tau$ for the process $X$. The present result complements and extends a similar result proved by Graversen and Peskir [1].

Citation

Download Citation

Cloud Makasu. "A SHARP MAXIMAL INEQUALITY FOR A GEOMETRIC BROWNIAN MOTION." Taiwanese J. Math. 19 (2) 585 - 591, 2015. https://doi.org/10.11650/tjm.19.2015.2551

Information

Published: 2015
First available in Project Euclid: 4 July 2017

zbMATH: 1357.60044
MathSciNet: MR3332315
Digital Object Identifier: 10.11650/tjm.19.2015.2551

Subjects:
Primary: 35F20 , 60G40 , 62L15

Keywords: maximal inequality , nonlinear differential equation , optimal stopping problem

Rights: Copyright © 2015 The Mathematical Society of the Republic of China

Vol.19 • No. 2 • 2015
Back to Top