Taiwanese Journal of Mathematics

NONLINEAR SCALARIZATION CHARACTERIZATIONS OF $E$-EFFICIENCY IN VECTOR OPTIMIZATION

Ke-Quan Zhao, Yuan-Mei Xia, and Xin-Min Yang

Full-text: Open access

Abstract

In this paper, two kinds of nonlinear scalarization functions are applied to characterize $E$-efficient solutions and weak $E$-efficient solutions of vector optimization problems and some nonlinear scalarization characterizations are obtained. Some examples also are given to illustrate the main results.

Article information

Source
Taiwanese J. Math., Volume 19, Number 2 (2015), 455-466.

Dates
First available in Project Euclid: 4 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499133640

Digital Object Identifier
doi:10.11650/tjm.19.2015.4360

Mathematical Reviews number (MathSciNet)
MR3332307

Zentralblatt MATH identifier
1357.90147

Subjects
Primary: 90C29: Multi-objective and goal programming 90C30: Nonlinear programming 90C46: Optimality conditions, duality [See also 49N15]

Keywords
nonlinear scalarization functions $E$-Efficient solutions weak $E$-efficient solutions vector optimization

Citation

Zhao, Ke-Quan; Xia, Yuan-Mei; Yang, Xin-Min. NONLINEAR SCALARIZATION CHARACTERIZATIONS OF $E$-EFFICIENCY IN VECTOR OPTIMIZATION. Taiwanese J. Math. 19 (2015), no. 2, 455--466. doi:10.11650/tjm.19.2015.4360. https://projecteuclid.org/euclid.twjm/1499133640


Export citation

References

  • \item[1.] C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems, SIAM J. Optim., 17 (2006), 688-710.
  • \item[2.] C. Gutiérrez, B. Jiménez and V. Novo, On approximate efficiency in multiobjective programming, Math. Meth. Oper. Res., 64 (2006), 165-185.
  • \item[3.] Y. Gao, X. M. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems, J. Ind. Manag. Optim., 7 (2011), 483-496.
  • \item[4.] F. Flores-Bazán and E. Hernández, A unified vector optimization problem: complete scalarizations and applications, Optimization, 60 (2011), 1399-1419.
  • \item[5.] M. Chicoo, F. Mignanego, L. Pusillo and S. Tijs, Vector optimization problem via improvement sets, J. Optim. Theory Appl., 150 (2011), 516-529.
  • \item[6.] C. Gutiérrez, B. Jiménez and V. Novo, Improvement sets and vector optimization, Eur. J. Oper. Res., 223 (2012), 304-311.
  • \item[7.] K. Q. Zhao and X. M. Yang, A unified stability result with perturbations in vector optimization, Optim. Lett., 7 (2013), 1913-1919.
  • \item[8.] K. Q. Zhao, X. M. Yang and J. W. Peng, Weak $E$-optimal solution in vector optimization, Taiwan. J. Math., 17 (2013), 1287-1302.
  • \item[9.] K. Q. Zhao and X. M. Yang, $E$-Benson proper efficiency in vector optimization, Optimization, doi: 10.1080/023 31934.2013.798321, 2013.
  • \item[10.] A. Göpfert, C. Tammer, H. Riahi and C. Zălinescu, Variational Methods in Partially Ordered Spaces, Springer-verlag, New York, 2003. \item[11.] A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM J. Control Optim., 42 (2003), 1071-1086.
  • \item[12.] Y. Chiang, Characterizations for solidness of dual cones with applications, J. Global Optim., 52 (2012), 79-94.