Taiwanese Journal of Mathematics


Zhongxiao Jia and Yuquan Sun

Full-text: Open access


We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640--659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with such basis they project the QEP onto the subspace and compute the Ritz pairs and the refined Ritz pairs, respectively. We develop implicitly restarted GSOAR and RGSOAR algorithms, in which we propose certain exact and refined shifts for respective use within the two algorithms. Numerical experiments on real-world problems illustrate the efficiency of the restarted algorithms and the superiority of the restarted RGSOAR to the restarted GSOAR. The experiments also demonstrate that both IGSOAR and IRGSOAR generally perform much better than the implicitly restarted Arnoldi method applied to the corresponding linearization problems, in terms of the accuracy and the computational efficiency.

Article information

Taiwanese J. Math., Volume 19, Number 1 (2015), 1-30.

First available in Project Euclid: 4 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 65F15: Eigenvalues, eigenvectors 15A18: Eigenvalues, singular values, and eigenvectors

QEP GSOAR procedure GSOAR method RGSOAR method Ritz vector refined Ritz vector implicit restart exact shifts refined shifts


Jia, Zhongxiao; Sun, Yuquan. IMPLICITLY RESTARTED GENERALIZED SECOND-ORDER ARNOLDI TYPE ALGORITHMS FOR THE QUADRATIC EIGENVALUE PROBLEM. Taiwanese J. Math. 19 (2015), no. 1, 1--30. doi:10.11650/tjm.19.2015.4577. https://projecteuclid.org/euclid.twjm/1499133614

Export citation


  • Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. A. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, PA, 2000.
  • Z. Bai and Y. Su, SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2005), 640-659.
  • L. Bao, Y. Lin and Y. Wei, Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems, Numer. Algor., 50 (2009), 17-32.
  • T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder and F. Tisseur, NLEVP: A collection of nonlinear eigenvalue problems. users' guide, MIMS EPrint 2010. 98, November 2010.
  • A. Feriani, F. Perotti and V. Simoncini, Iterative system solvers for the frequency analysis of linear mechanical systems, Computer Methods Appl. Mech. Engrg., 190 (2000), 1719-1739.
  • G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Edition, The John Hopkins University, Baltimore, 1996.
  • N. J. Higham, R. C. Li and F. Tisseur, Backward error of polynomial eigenproblems solved by linearization, SIAM J. Matrix Anal. Appl., 29 (2007), 1218-1241.
  • M. E. Hochstenbach, Harmonic and refined extraction methods for the singular value problem, with applications in least squares problems, BIT Numer. Math., 44 (2004), 721-754.
  • H.-M. Huang, Z. Jia and W.-W. Lin, Convergence of Ritz pairs, Ritz vectors and refined Ritz vectors for quadratic eigenvalue problems, BIT Numer. Math., 53 (2013), 941-958.
  • W.-Q. Huang, T. Li, Y.-Ta Li and W.-W. Lin, A semiorthogonal generalized Arnoldi method and its variations for quadratic eigenvalue problems, Numer. Linear Algebra Appl., 20 (2013), 259-280.
  • Z. Jia, Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems, Linear Algebra Appl., 259 (1997), 1-23.
  • Z. Jia, Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and implicitly restarted refined Arnoldi algorithm, Linear Algebra Appl., 287 (1999), 191-214.
  • Z. Jia, The refined harmonic Arnoldi method and an implicitly restarted refined algorithm for computing interior eigenpairs of large matrices, Appl. Numer. Math., 42 (2002), 489-512.
  • Z. Jia, Using cross-product matrices to compute the SVD, Numer. Algor., 42 (2006), 31-61.
  • Z. Jia and D. Niu, An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition, SIAM J. Matrix Anal. Appl., 25 (2003), 246-265.
  • Z. Jia and D. Niu, A refined harmonic Lanczos bidiagonalization method and an implicitly restarted algorithm for computing the smallest singular triplets of large matrices, SIAM J. Sci. Comput., 32 (2010), 714-744.
  • Z. Jia and G. W. Stewart, The RayleighRitz method for approximating eigenspaces, Math. Comput., 270 (2001), 637-647.
  • E. Kokiopoulou, C. Bekas and E. Gallopoulos, Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization, Appl. Numer. Math., 49 (2004), 39-61.
  • K. Meerbergen, The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem, SIAM J. Matrix Anal. Appl., 34 (2008), 1463-1482.
  • D. Kressner and J. E. Roman, Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis, Numer. Linear Algebra Appl., 2013, DOI: 10.1002/nla.
  • C. Otto, Arnoldi and Jacobi-Davidson Methods for Quadratic Eigenvalue Problems, diploma thesis, Institut für Mathematik, Technische Universität Berlin, Germany, 2004.
  • Y. Saad, Numerical Methods for Large Eigenvalue Problems, Revised Version, Vol. 66 of Classics in Applied Mathematics, SIAM, Philadelphia, PA, 2011.
  • D. C. Sorensen, Implicit application of polynomial filters in a $k$-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), 357-385.
  • G. W. Stewart, Matrix Algorithms, Vol II: Eigensystems, SIAM, Philadelphia, PA, 2001.
  • F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235-286.
  • H. A. Van der Vorst, Computational Methods for Large Eigenvalue Problems, Elsevier, NorthHollands, 2002.
  • S. Wei and I. Kao, Vibration analysis of wire and frequency response in the modern wiresaw manufacturing process, J. Sound Vibr., 231 (2000), 1383-1395.
  • Y. Zhang and Y. Su, A memory-efficient model order reduction for time-delay systems, BIT Numer. Math., 53 (2013), 1047-1073.
  • L. Zhou, L. Bao, Y. Lin, Y. Wei and Q. Wu, Restarted generalized Krylov subspace methods for solving quadratic eigenvalue problems, Inter. J. Comput. Math. Sci., 4 (2010), 148-155.