Taiwanese Journal of Mathematics

Mori's Program for the Moduli Space of Conics in Grassmannian

Kiryong Chung and Han-Bom Moon

Full-text: Open access

Abstract

We complete Mori's program for Kontsevich's moduli space of degree $2$ stable maps to the Grassmannian of lines. We describe all birational models in terms of moduli spaces (of curves and sheaves), incidence varieties, and Kirwan's partial desingularization.

Article information

Source
Taiwanese J. Math., Volume 21, Number 3 (2017), 621-652.

Dates
First available in Project Euclid: 1 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1498874610

Digital Object Identifier
doi:10.11650/tjm/7769

Mathematical Reviews number (MathSciNet)
MR3661384

Zentralblatt MATH identifier
06871335

Subjects
Primary: 14D22: Fine and coarse moduli spaces 14F42: Motivic cohomology; motivic homotopy theory [See also 19E15] 14E15: Global theory and resolution of singularities [See also 14B05, 32S20, 32S45]

Keywords
moduli space rational curves Grassmannian birational geometry

Citation

Chung, Kiryong; Moon, Han-Bom. Mori's Program for the Moduli Space of Conics in Grassmannian. Taiwanese J. Math. 21 (2017), no. 3, 621--652. doi:10.11650/tjm/7769. https://projecteuclid.org/euclid.twjm/1498874610


Export citation

References

  • A. Bertram, C. Martinez and J. Wang, The birational geometry of moduli spaces of sheaves on the projective plane, Geom. Dedicata 173 (2014), no. 1, 37–64.
  • D. Chen, Mori's program for the Kontsevich moduli space $\ol{\ms{M}}_{0,0}(\mb{P}^3,3)$, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 067, 17 pp.
  • D. Chen and I. Coskun, Stable base locus decompositions of Kontsevich moduli spaces, Michigan Math. J. 59 (2010), no. 2, 435–466.
  • ––––, Towards Mori's program for the moduli space of stable maps, Amer. J. Math. 133 (2011), no. 5, 1389–1419.
  • J. Choi and K. Chung, The geometry of the moduli space of one-dimensional sheaves, Sci. China Math. 58 (2015), no. 3, 487–500.
  • ––––, Moduli spaces of $\alpha$-stable pairs and wall-crossing on $\mb{P}^2$, J. Math. Soc. Japan 68 (2016), no. 2, 685–709.
  • J. Choi and M. Maican, Torus action on the moduli spaces of torsion plane sheaves of multiplicity four, J. Geom. Phys. 83 (2014), 18–35.
  • K. Chung, J. Hong and Y.-H. Kiem, Compactified moduli spaces of rational curves in projective homogeneous varieties, J. Math. Soc. Japan 64 (2012), no. 4, 1211–1248.
  • K. Chung and H.-B. Moon, Moduli of sheaves, Fourier-Mukai transform, and partial desingularization, Math. Z. 283 (2016), no. 1-2, 275–299.
  • I. Coskun and J. Starr, Divisors on the space of maps to Grassmannians, Int. Math. Res. Not. 2006, Art. ID 35273, 25 pp.
  • A. J. de Jong and J. Starr, Cubic fourfolds and spaces of rational curves, Illinois J. Math. 48 (2004), no. 2, 415–450.
  • J.-M. Drézet, Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur $\mb{P}_2(\mb{C})$, J. Reine Angew. Math. 380 (1987), 14–58.
  • J.-M. Drézet and M. Maican, On the geometry of the moduli spaces of semi-stable sheaves supported on plane quartics, Geom. Dedicata 152 (2011), no. 1, 17–49.
  • A. B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 1996, no. 13, 613–663.
  • S. Hosono and H. Takagi, Double quintic symmetroids, Reye congruences, and their derived equivalence, J. Differential Geom. 104 (2016), no. 3, 443–497.
  • ––––, Geometry of symmetric determinantal loci, arXiv:1508.01995, 2015.
  • O. Iena, A global description of the fine Simpson moduli space of $1$-dimensional sheaves supported on plane quartics, arXiv:1607.01319, 2016.
  • A. Iliev and L. Manivel, Fano manifolds of degree ten and EPW sextics, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 3, 393–426.
  • Y.-H. Kiem, Hecke correspondence, stable maps, and the Kirwan desingularization, Duke Math. J. 136 (2007), no. 3, 585–618.
  • Y.-H. Kiem and H.-B. Moon, Moduli space of stable maps to projective space via GIT, Internat. J. Math. 21 (2010), no. 5, 639–664.
  • F. C. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122 (1985), no. 1, 41–85.
  • A. Kuznetsov and D. Markushevich, Symplectic structures on moduli spaces of sheaves via the Atiyah class, J. Geom. Phys. 59 (2009), no. 7, 843–860.
  • J. Le Potier, Systèmes cohérents et structures de niveau, Astérisque 214 (1993), 143 pp.
  • A. López Martín, Poincaré polynomials of stable map spaces to Grassmannians, Rend. Semin. Mat. Univ. Padova 131 (2014), 193–208.
  • H.-B. Moon, Mori's program for $\ol{M}_{0,7}$ with symmetric divisors, to appear in Canad. J. Math., 35 pp.
  • H.-B. Moon and S.-B. Yoo, Birational geometry of the moduli space of rank $2$ parabolic vector bundles on a rational curve, Int. Math. Res. Not. IMRN 2016 (2016), no. 3, 827–859.
  • V. Muñoz, Hodge polynomials of the moduli spaces of rank $3$ pairs, Geom. Dedicata 136 (2008), no. 1, 17–46.
  • K. G. O'Grady, Irreducible symplectic $4$-folds and Eisenbud-Popescu-Walter sextics, Duke Math. J. 134 (2006), no. 1, 99–137.
  • D. Oprea, Divisors on the moduli spaces of stable maps to flag varieties and reconstruction, J. Reine Angew. Math. 586 (2005), 169–205.
  • A. E. Parker, An elementary GIT construction of the moduli space of stable maps, Illinois J. Math. 51 (2007), no. 3, 1003–1025.
  • Y. G. Prokhorov, Compactifications of $\mb{C}^4$ of index $3$, in Algebraic Geometry and its Applications, (Yaroslavl', 1992), 159–169, Aspects Math. E25, Vieweg, Braunschweig, 1994.
  • J. Stoppa, Universal covers and the GW/Kronecker correspondence, Commun. Number Theory Phys. 5 (2011), no. 2, 353–395.
  • Y. Yuan, Moduli spaces of semistable sheaves of dimension $1$ on $\mb{P}^2$, Pure Appl. Math. Q. 10 (2014), no. 4, 723–766.