Taiwanese Journal of Mathematics

A Characterization of Multipliers of a Lau Algebra Constructed by Semisimple Commutative Banach Algebras

Sin-Ei Takahasi, Hiroyuki Takagi, and Takeshi Miura

Full-text: Open access

Abstract

A necessary and sufficient condition for a Lau type binary operation defined by two mappings to be an algebra-operation is given in terms of multipliers. Also a characterization of multipliers of a Lau algebra constructed by semisimple commutative Banach algebras is given in terms of multipliers of original Banach algebras.

Article information

Source
Taiwanese J. Math., Volume 20, Number 6 (2016), 1401-1415.

Dates
First available in Project Euclid: 1 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1498874537

Digital Object Identifier
doi:10.11650/tjm.20.2016.7386

Mathematical Reviews number (MathSciNet)
MR3580301

Zentralblatt MATH identifier
1366.46037

Subjects
Primary: 46J05: General theory of commutative topological algebras
Secondary: 46H05: General theory of topological algebras

Keywords
semisimple commutative Banach algebras multipliers double multipliers Lau Banach algebras

Citation

Takahasi, Sin-Ei; Takagi, Hiroyuki; Miura, Takeshi. A Characterization of Multipliers of a Lau Algebra Constructed by Semisimple Commutative Banach Algebras. Taiwanese J. Math. 20 (2016), no. 6, 1401--1415. doi:10.11650/tjm.20.2016.7386. https://projecteuclid.org/euclid.twjm/1498874537


Export citation

References

  • P. A. Dabhi, Multipliers of perturbed Cartesian products with an application to BSE-property, Acta Math. Hungar. 149 (2016), no. 1, 58–66.
  • R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971.
  • A. T. M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), no. 3, 161–175.
  • M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia. Math. 178 (2007), no. 3, 277–294.