Taiwanese Journal of Mathematics
- Taiwanese J. Math.
- Volume 20, Number 5 (2016), 1009-1039.
Cross Theorems for Separately $(\cdot, W)$-meromorphic Functions
Thai Thuan Quang and Lien Vuong Lam
Abstract
It is shown that Rothstein's theorem holds for $(F, W)$-meromorphic functions with $F$ is a sequentially complete locally convex space. We also prove that a meromorphic function on a Riemann domain $D$ over a separable Banach $E$ with values in a sequentially complete locally convex space can be extended meromorphically to the envelope of holomorphy $\widehat{D}$ of $D$. Using these results, in the remaining parts, we give a version of Kazarian's theorem for the class of separately $(\cdot, W)$-meromorphic functions with values in a sequentially complete locally convex space and generalize cross theorem with pluripolar singularities of Jarnicki and Pflug for separately $(\cdot, W)$-meromorphic functions with values in a Fréchet space.
Article information
Source
Taiwanese J. Math., Volume 20, Number 5 (2016), 1009-1039.
Dates
First available in Project Euclid: 1 July 2017
Permanent link to this document
https://projecteuclid.org/euclid.twjm/1498874514
Digital Object Identifier
doi:10.11650/tjm.20.2016.7363
Mathematical Reviews number (MathSciNet)
MR3555886
Zentralblatt MATH identifier
1361.32025
Subjects
Primary: 30D30: Meromorphic functions, general theory 32A10: Holomorphic functions 32B10: Germs of analytic sets, local parametrization 46A04: Locally convex Fréchet spaces and (DF)-spaces 46E50: Spaces of differentiable or holomorphic functions on infinite- dimensional spaces [See also 46G20, 46G25, 47H60]
Keywords
meromorphic functions holomorphic functions plurisubharmonic functions pluripolar set locally pluriregular set locally convex space
Citation
Thuan Quang, Thai; Vuong Lam, Lien. Cross Theorems for Separately $(\cdot, W)$-meromorphic Functions. Taiwanese J. Math. 20 (2016), no. 5, 1009--1039. doi:10.11650/tjm.20.2016.7363. https://projecteuclid.org/euclid.twjm/1498874514