Taiwanese Journal of Mathematics

On the Drinfeld Center of the Category of Comodules over a Co-quasitriangular Hopf Algebra

Haixing Zhu

Full-text: Open access


Let $H$ be a co-quasitriangular Hopf algebra with bijective antipode. We prove that the Drinfeld center of the category of $H$-comodules is equivalent to the category of modules over some braided group. In particular, the equivalence holds not only for a finite dimensional $H$, but also for an infinite dimensional one.

Article information

Taiwanese J. Math., Volume 20, Number 2 (2016), 263-275.

First available in Project Euclid: 1 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 16T05: Hopf algebras and their applications [See also 16S40, 57T05] 16K50: Brauer groups [See also 12G05, 14F22]

co-quasitriangular Hopf algebras braided groups braided tensor categories drinfeld centers Yetter-Drinfeld modules


Zhu, Haixing. On the Drinfeld Center of the Category of Comodules over a Co-quasitriangular Hopf Algebra. Taiwanese J. Math. 20 (2016), no. 2, 263--275. doi:10.11650/tjm.20.2016.5965. https://projecteuclid.org/euclid.twjm/1498874440

Export citation


  • M. Beattie and D. Bulacu, On the antipode of a co-Frobenius (co)quasitriangular Hopf algebra, Commu. Algebra 37 (2009), no. 9, 2981–2993.
  • A. Davydov and D. Nikshych, The Picard crossed module of a braided tensor category, Algebra Number Theory 7 (2013), no. 6, 1365–1403.
  • J. Dello and Y. Zhang, Braided autoequivalences and the equivariant Brauer group of a quasitriangular Hopf algebra, J. Algebra 445 (2016), no. 1, 244–279.
  • V. G. Drinfel'd, Quantum groups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 798–820, Amer. Math. Soc., Providence, RI, 1987.
  • V. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, On braided fusion categories I, Selecta Math. (N.S.) 16 (2010), 1–119.
  • P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642.
  • P. Etingof, D. Nikshych and V. Ostrik. Fusion categories and homotopy theory, Quantum Topol. 1 (2010), no. 3, 209–273.
  • A. Joyal and R. Street, Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. Algebra 71 (1991), no. 1, 43–51.
  • C. Kassel, Quantum Groups, Graduate Texts in Mathematics 155, Springer-Verlag, New York, 1995.
  • S. Majid, Quantum groups and quantum probability, in Quantum Probability and Related Topics, 333–358, QP-PQ, VI, World Sci. Publ., River Edge, NJ, 1991.
  • ––––, Representations, duals and quantum doubles of monoidal categories, Rend. Circ. Mat. Palermo (2) Suppl. 26 (1991), 197–206.
  • ––––, Examples of braided groups and braided matrices, J. Math. Phys. 32 (1991), no. 12, 3246–3253.
  • ––––, Braided groups, J. Pure Appl. Algebra 86 (1993), no. 2, 187–221.
  • ––––, Foundations of Quantum Group Theory, Cambridge Univversit Press, Cambridge, 1995.
  • M. E. Sweedler, Hopf Algebras, Mathematics Lecture Note Series, W. A. Benjamin, New York, 1969.
  • D. N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 261–290.
  • Y. Zhang, An exact sequence for the Brauer group of a finite quantum group, J. Algebra, 272 (2004), no. 1, 321–378.
  • H. X. Zhu, Brauer groups of braided fusion categories, Ph.D dissertation, September 2012, Hasselt University, Hasselt, Belgium.
  • H. Zhu and Y. Zhang, Braided autoequivalences and quantum commutative bi-Galois objects, J. Pure Appl. Algebra 219 (2015), no. 9, 4144–4167.