Taiwanese Journal of Mathematics

On Vectorized Weighted Sum Formulas of Multiple Zeta Values

Chan-Liang Chung and Yao Lin Ong

Full-text: Open access

Abstract

In this paper, we introduce the vectorization of shuffle products of two sums of multiple zeta values, which generalizes the weighted sum formula obtained by Ohno and Zudilin. Some interesting weighted sum formulas of vectorized type are obtained, such as\begin{align*}  &\quad \sum_{\substack{\boldsymbol{\alpha}+\boldsymbol{\beta}=\boldsymbol{k}    \\ |\boldsymbol{\alpha}|: \textrm{even}}}    M(\boldsymbol{\alpha}) M(\boldsymbol{\beta}) \sum_{|\boldsymbol{c}|=|\boldsymbol{k}|+r+3} 2^{c_{|\boldsymbol{\alpha}|+1}}    \zeta(c_0, c_1, \ldots, c_{|\boldsymbol{\alpha}|}, \ldots,    c_{|\boldsymbol{k}|+1}+1) \\  &= \frac{1}{2} (2|\boldsymbol{k}|+r+5) M(\boldsymbol{k})    \zeta(|\boldsymbol{k}|+r+4),\end{align*}where $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ and $\boldsymbol{k}$ are $n$-tuples of nonnegative integers with $|\boldsymbol{k}| = k_1 + k_2 + \cdots + k_n$ even; $M(\boldsymbol{u})$ is the multinomial coefficient defined by $\binom{u_1 + u_2 + \cdots + u_n}{u_1, u_2, \ldots, u_n}$ with the value $\frac{|\boldsymbol{u}|!}{u_1! u_2! \cdots u_n!}$; and $r$ is a nonnegative integer. Moreover, some newly developed combinatorial identities of vectorized types involving multinomial coefficients by extending the shuffle products of two sums of multiple zeta values in their vectorizations are given as well.

Article information

Source
Taiwanese J. Math., Volume 20, Number 2 (2016), 243-261.

Dates
First available in Project Euclid: 1 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1498874439

Digital Object Identifier
doi:10.11650/tjm.20.2016.5487

Mathematical Reviews number (MathSciNet)
MR3481383

Zentralblatt MATH identifier
1357.11079

Subjects
Primary: 40A25: Approximation to limiting values (summation of series, etc.) {For the Euler-Maclaurin summation formula, see 65B15} 40B05: Multiple sequences and series (should also be assigned at least one other classification number in this section)
Secondary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72} 11M06: $\zeta (s)$ and $L(s, \chi)$ 33E20: Other functions defined by series and integrals

Keywords
multiple zeta value shuffle relation sum formula weighted sum formula

Citation

Chung, Chan-Liang; Ong, Yao Lin. On Vectorized Weighted Sum Formulas of Multiple Zeta Values. Taiwanese J. Math. 20 (2016), no. 2, 243--261. doi:10.11650/tjm.20.2016.5487. https://projecteuclid.org/euclid.twjm/1498874439


Export citation

References

  • T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J. 153 (1999), 189–209.
  • J. M. Borwein and D. M. Bradley, Thirty-two Goldbach variations, Int. J. Number Theory 2 (2006), no. 1, 65–103.
  • M. Eie, W.-C. Liaw, and Y. L. Ong, A restricted sum formula among multiple zeta values, J. Number Theory 129 (2009), no. 4, 908–921.
  • M. Eie and C.-S. Wei, A short proof for the sum formula and its generalization, Arch. Math. (Basel) 91 (2008), no. 4, 330–338.
  • H. Gangl, M. Kaneko and D. Zagier, Double zeta values and modular forms, in Automorphic Forms and Zeta Functions, 71–106, World Sci. Publ., Hackensack, NJ, 2006.
  • A. Granville, A decomposition of Riemann's zeta-function, in Analytic Number Theory (Kyoto, 1996), 95–101.
  • Y. Ohno and W. Zudilin, Zeta stars, Commun. Number Theory Phys. 2 (2008), no. 2, 325–347.
  • Y. L. Ong, M. Eie and W.-C. Liaw, On generalizations of weighted sum formulas of multiple zeta values, Int. J. Number Theory 9 (2013), no. 5, 1185–1198.
  • D. Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics, Vol. II (Paris, 1992), 497–512, Progr. Math. 120, Birkhäuser, Basel, 1994.