Tunisian Journal of Mathematics

The Markov sequence problem for the Jacobi polynomials and on the simplex

Dominique Bakry and Lamine Mbarki

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/tunis.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The Markov sequence problem aims at the description of possible eigenvalues of symmetric Markov operators with some given orthonormal basis as eigenvector decomposition. A fundamental tool for their description is the hypergroup property. We first present the general Markov sequence problem and provide the classical examples, most of them associated with the classical families of orthogonal polynomials. We then concentrate on the hypergroup property, and provide a general method to obtain it, inspired by a fundamental work of Carlen, Geronimo and Loss. Using this technique and a few properties of diffusion operators having polynomial eigenvectors, we then provide a simplified proof of the hypergroup property for the Jacobi polynomials (Gasper’s theorem) on the unit interval. We finally investigate various generalizations of this property for the family of Dirichlet laws on the simplex.

Article information

Tunisian J. Math., Volume 2, Number 3 (2020), 535-566.

Received: 12 December 2018
Revised: 1 May 2019
Accepted: 18 May 2019
First available in Project Euclid: 13 December 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 33C45: Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [See also 42C05 for general orthogonal polynomials and functions] 43A62: Hypergroups
Secondary: 43A90: Spherical functions [See also 22E45, 22E46, 33C55] 46H99: None of the above, but in this section 60J99: None of the above, but in this section

Markov sequences hypergroups orthogonal polynomials Dirichlet measures


Bakry, Dominique; Mbarki, Lamine. The Markov sequence problem for the Jacobi polynomials and on the simplex. Tunisian J. Math. 2 (2020), no. 3, 535--566. doi:10.2140/tunis.2020.2.535. https://projecteuclid.org/euclid.tunis/1576206289

Export citation


  • A. Achour and K. Trimèche, “Opérateurs de translation généralisée associés à un opérateur différentiel singulier sur un intervalle borné”, C. R. Acad. Sci. Paris Sér. A–B 288:7 (1979), A399–A402.
  • D. Bakry and M. Echerbault, “Sur les inégalités GKS”, pp. 178–206 in Séminaire de Probabilités, XXX, edited by J. Azéma et al., Lecture Notes in Math. 1626, Springer, 1996.
  • D. Bakry and N. Huet, “The hypergroup property and representation of Markov kernels”, pp. 295–347 in Séminaire de probabilités, XLI, edited by C. Donati-Martin et al., Lecture Notes in Math. 1934, Springer, 2008.
  • D. Bakry and O. Mazet, “Characterization of Markov semigroups on $\mathbb R$ associated to some families of orthogonal polynomials”, pp. 60–80 in Séminaire de Probabilités, XXXVII, edited by J. Azéma et al., Lecture Notes in Math. 1832, Springer, 2003.
  • D. Bakry and O. Zribi, “Hypergroup properties for the deltoid model”, Rev. Mat. Iberoam. 33:1 (2017), 195–218.
  • D. Bakry, S. Orevkov, and M. Zani, “Orthogonal polynomials and diffusion operators”, preprint, 2013. to appear in Ann. Fac. Sc. Toulouse.
  • D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der Math. Wissenschaften 348, Springer, 2014.
  • N. Balakrishnan, “Chapter 27: Dirichlet distribution”, pp. 269–276 in A primer on statistical distributions, edited by N. Balakrishnan and V. B. Nevzorov, Wiley, Hoboken, NJ, 2003.
  • W. R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics 20, de Gruyter, Berlin, 1995.
  • S. Bochner, “Positive zonal functions on spheres”, Proc. Nat. Acad. Sci. U. S. A. 40:12 (1954), 1141–1147.
  • S. Bochner, “Sturm–Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions”, pp. 23–48 in Proceedings of the conference on differential equations, University of Maryland Book Store, College Park, MD, 1956.
  • S. Bochner, “Positivity of the heat kernel for ultraspherical polynomials and similar functions”, Arch. Rational Mech. Anal. 70:3 (1979), 211–217.
  • L. de Branges, “A proof of the Bieberbach conjecture”, Acta Math. 154:1-2 (1985), 137–152.
  • E. A. Carlen, J. S. Geronimo, and M. Loss, “On the Markov sequence problem for Jacobi polynomials”, Adv. Math. 226:4 (2011), 3426–3466.
  • W. C. Connett and A. L. Schwartz, “Product formulas, hypergroups, and the Jacobi polynomials”, Bull. Amer. Math. Soc. $($N.S.$)$ 22:1 (1990), 91–96.
  • M. Flensted-Jensen and T. H. Koornwinder, “Jacobi functions: the addition formula and the positivity of the dual convolution structure”, Ark. Mat. 17:1 (1979), 139–151.
  • G. Gasper, “Linearization of the product of Jacobi polynomials, I–II”, Canadian J. Math. 22 (1970), 171–175, 582–593.
  • G. Gasper, “Positivity and the convolution structure for Jacobi series”, Ann. of Math. $(2)$ 93 (1971), 112–118.
  • G. Gasper, “Banach algebras for Jacobi series and positivity of a kernel”, Ann. of Math. $(2)$ 95 (1972), 261–280.
  • A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data analysis, 2nd ed., CRC, Boca Raton, FL, 2004.
  • L. Gross, “Logarithmic Sobolev inequalities”, Amer. J. Math. 97:4 (1975), 1061–1083.
  • L. Gross, “Hypercontractivity, logarithmic Sobolev inequalities, and applications: a survey of surveys”, pp. 45–73 in Diffusion, quantum theory, and radically elementary mathematics, edited by W. G. Faris, Math. Notes 47, Princeton Univ. Press, 2006.
  • D. G. Kelly and S. Sherman, “General Griffiths' inequalities on correlations in Ising ferromagnets”, J. Math.Phys. 9:3 (1968), 466–484.
  • T. Koornwinder, “Jacobi polynomials, II: An analytic proof of the product formula”, SIAM J. Math. Anal. 5 (1974), 125–137.
  • T. Koornwinder, “Yet another proof of the addition formula for Jacobi polynomials”, J. Math. Anal. Appl. 61:1 (1977), 136–141.
  • R. Lasser, “Bochner theorems for hypergroups and their applications to orthogonal polynomial expansions”, J. Approx. Theory 37:4 (1983), 311–325.
  • G. Letac, “Dirichlet random probabilites and applications”, graduate course notes, Sapienza Università, Roma, 2012, www.mat.uniroma1.it/mat_cms/materiali/2012-2013/piccioni-20854-CourseDirichletRome.pdf.
  • G. Letac and H. Massam, “A formula on multivariate Dirichlet distributions”, Statist. Probab. Lett. 38:3 (1998), 247–253.
  • S. Li, “Matrix Dirichlet processes”, Ann. Inst. Henri Poincaré Probab. Stat. 55:2 (2019), 909–940.
  • P.-A. Meyer, “Note sur les processus d'Ornstein–Uhlenbeck”, pp. 95–133 in Séminaire de Probabilités, XVI, edited by J. Azéma and M. Yor, Lecture Notes in Math. 920, Springer, 1982.
  • O. V. Sarmanov and Z. N. Bratoeva, “Probabilistic properties of bilinear expansions in Hermite polynomials”, Teor. Verojatnost. i Primenen. 12 (1967), 520–531. In Russian; translated in Theory Probab. Appl. 12:3 (1967), 470–481.