Topological Methods in Nonlinear Analysis

The limit cycles of a class of quintic polynomial vector fields

Jaume Llibre and Tayeb Salhi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Using the inverse integrating factor we study the limit cycles of a class of polynomial vector fields of degree $5$.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 54, Number 1 (2019), 141-151.

Dates
First available in Project Euclid: 16 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1563242555

Digital Object Identifier
doi:10.12775/TMNA.2019.030

Citation

Llibre, Jaume; Salhi, Tayeb. The limit cycles of a class of quintic polynomial vector fields. Topol. Methods Nonlinear Anal. 54 (2019), no. 1, 141--151. doi:10.12775/TMNA.2019.030. https://projecteuclid.org/euclid.tmna/1563242555


Export citation

References

  • A.A. Andronov, E.A. Leontovich, I.I. Gordon and A.L. Maier, Qualitative Theory of Second-Order Dynamical Systems, Wiley, New York, 1973.
  • R. Asheghi and H.R.Z. Zangeneh, Bifurcations of limit cycles for a quintic Hamiltonian system with a double cuspidal loop, Comput. Math. Appl. 59 (2010), 1409–-1418.
  • J. Chavarriga, H. Giacomini and J. Giné, On a new type of bifurcation of limit cycles for a planar cubic system, Nonlinear Anal. 36 (1999), 139–149.
  • C. Du and Y. Liu, General center conditions and bifurcation of limit cycles for a quasi-symmetric seventh degree system, Comput. Math. Appl. 56 (2008), 2957–2969.
  • F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Differential Systems, UniversiText, Springer–Verlag, New York, 2006.
  • I.A. García and M. Grau, A survey on the inverse integrating factor, Qual. Theory Dyn. Syst. 9 (2010), 115–-166.
  • H. Giacomini, J. Llibre and M. Viano, On the nonexistence, existence, and uniquennes of limit cycles, Nonlinearity 9 (1996), 501–516.
  • H. Giacomini, J. Llibre and M. Viano, On the shape of limit cycles that bifurcate from Hamiltonian centers, Nonlinear Anal. 41 (2001), 523–537.
  • H. Giacomini, J. Llibre and M. Viano, The shape of limit cycles that bifurcate from non–Hamiltonian centers, Nonlinear Anal. 43 (2001), 837–859.
  • H. Giacomini, J. Llibre and M. Viano, Arbitrary order bifurcations for perturbed Hamiltonian planar systems via the reciprocal of an integrating factor, Nonlinear Anal. 48 (2002), 117–136.
  • H. Giacomini, J. Llibre and M. Viano, Semistable limit cycles that bifurcate from centers, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 3489–3498.
  • E.A. González, Generic properties of polynomial vector fields at infinity, Trans. Amer. Math. Soc. 143 (1969), 201–222.
  • D. Hilbert, Mathematische Problem \rom(lecture\rom), Second Internat. Congress Math. Paris, 1900, Nachr. Ges. Wiss. Göttingen Math.–Phys. Kl. 1900, 253–297.
  • M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974.
  • Yu. S. Ilyashenko, Centennial history of Hilbert's 16th problem, Bull. Amer. Math. Soc. 39 (2002), 301–354.
  • J. Llibre and G. Rodríguez, Configurations of limit cycles and planar polynomial vector fields, J. Differential Equations 198 (2004), 374–380.
  • Y. Yanqian et al., Theory of Limit Cycles, Translations of Math. Monographs, Vol. 66, Amer. Math. Soc., Providence, 1986.