Topological Methods in Nonlinear Analysis

Three-dimensional thermo-visco-elasticity with the Einstein-Debye $(\theta^3+\theta)$-law for the specific heat. Global regular solvability

Irena Pawłow and Wojciech M. Zajączkowski

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A three-dimensional thermo-visco-elastic system for the Kelvin-Voigt type material at small strain is considered. The system involves the constant heat conductivity and the specific heat satisfying the Einstein-Debye $(\theta^3+\theta)$-law. Such a nonlinear law, relevant at relatively low temperatures, represents the main novelty of the paper. The existence of global regular solutions is proved without the small data assumption. The crucial part of the proof is the strictly positive lower bound on the absolute temperature $\theta$. The problem remains open in the case of the Debye $\theta^3$-law. The existence of local in time solutions is proved by the Banach successive approximations method. The global a priori estimates are derived with the help of the theory of anisotropic Sobolev spaces with a mixed norm. Such estimates allow to extend the local solution step by step in time.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 52, Number 1 (2018), 161-193.

Dates
First available in Project Euclid: 18 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1534557630

Digital Object Identifier
doi:10.12775/TMNA.2018.016

Mathematical Reviews number (MathSciNet)
MR3867984

Zentralblatt MATH identifier
07029866

Citation

Pawłow, Irena; Zajączkowski, Wojciech M. Three-dimensional thermo-visco-elasticity with the Einstein-Debye $(\theta^3+\theta)$-law for the specific heat. Global regular solvability. Topol. Methods Nonlinear Anal. 52 (2018), no. 1, 161--193. doi:10.12775/TMNA.2018.016. https://projecteuclid.org/euclid.tmna/1534557630


Export citation

References

  • O.V. Besov, V.P. Il'in, and S.M. Nikolskiĭ, Integral Representation of Functions and Theorems of Imbeddings, Nauka, Moscow, 1975. (in Russian)
  • F.J. Blatt, Modern Physics, McGraw-Hill, 1992.
  • E. Bonetti and G. Bonfanti, Existence and uniqueness of the solution to a \rom3D thermoelastic system, Electron. J. Differential Equations 50 (2003), 1–15.
  • Y.S. Bugrov, Function spaces with mixed norm, Math. USSR. Izv. 5 (1971), 1145–1167.
  • J.D. Clayton, Nonlinear Mechanics of Crystals, Solid Mechanics and its Applications, Vol. 177, Springer, 2011.
  • C.M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal. 13 (1982), 397–408.
  • C.M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal. 6 (1982), 435–454.
  • P. Debye, Zur Theorie der spezifischen Wärmen, Ann. Phys. (Leipzig) 39 (1912), 789–939.
  • R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$ estimates for parabolic boundary value problems with inhomogeneous data, Math. Z. 257 (2007), 193–224.
  • C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems\rom: Variational Methods and Existence Theorems, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2005.
  • A. Einstein, Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, Ann. Phys. (Leipzig) 22 (1907), 180–190.
  • M. Fabrizio, D. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order, Math. Methods Appl. Sci. 31 (2008), 627–653.
  • G. Francfort and P.M. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal. 96 (1986), 265–293.
  • M. Frémond, Non-smooth Thermomechanics, Springer–Verlag, Berlin, 2002.
  • K.K. Golovkin, On equivalent norms for fractional spaces, Amer. Math. Soc. Transl. Ser. 2 81 (1969), 257–280.
  • Ch. Kittel, Introduction to Solid State Physics, 7th Ed., Wiley, 1996.
  • N.V. Krylov, The Calderon–Zygmund theorem and its application for parabolic equations, Algebra i Analiz 13 (2001), 1–25. (in Russian)
  • O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967. (in Russian)
  • H.P. Meyers, Introductory Solid State Physics, 2nd ed., Taylor&Francis, 1997.
  • J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.
  • I. Pawłow, Three dimensional model of thermomechanical evolution of shape memory materials, Control Cybernet. 29 (2000), 341–365.
  • I. Pawłow and W.M. Zaj¹czkowski, Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), 441–466.
  • I. Pawłow and W.M. Zaj¹czkowski, Global regular solutions to a Kelvin–Voigt type thermoviscoelastic system, SIAM J. Math. Anal. 45 (2013), 1997–2045.
  • I. Pawłow and W.M. Zaj¹czkowski, Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat, Commun. Pure Appl. Anal. 16 (2017), no. 4, 1331–1371.
  • I. Pawłow and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system, Dissertationes Math. 406 (2002), p. 46.
  • A. Petit and P. Dulong, Sur quelques points importants de la theorie de la chaleur, Ann. Chim. Phys. 10 (1819), 395–413.
  • T. Roub\' iček, Thermo-viscoelasticity at small strains with $L^1$-data, Quart. Appl. Math. 67 (2009), 47–71.
  • T. Roub\' iček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal. 42 (2010), 256–297.
  • T. Roub\' iček, Nonlinearly coupled thermo-visco-elasticity, Nonlinear Differ. Equ. Appl. 20 (2013), 1243–1275.
  • D.V. Schroeder, An Introduction to Thermal Physics, Addison–Wesley, 2000.
  • M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity, Arch. Ration. Mech. Anal. 76 (1981), 97–133.
  • V.A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy MIAN 83 (1965). (in Russian)
  • V.A. Solonnikov, Estimates of solutions of the Stokes equations in S.L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. St. Petersburg Otdel. Mat. Inst. Steklov (POMI) 288 (2002), 204–231.
  • W. von Wahl, The Equations of the Navier–Stokes and Abstract Parabolic Equations, Braunschweig, 1985.
  • V.G. Zvyagin and V.P. Orlov, Existence and uniqueness results for a coupled problem in continuum thermomechanics, Vestnik WGU, Ser. Fizika. Matematika, No. 2 (2014), 120–141.