Topological Methods in Nonlinear Analysis

On certain variant of strongly nonlinear multidimensional interpolation inequality

Tomasz Choczewski and Agnieszka Kałamajska

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We obtain the inequality \[ \int_{\Omega}|\nabla u(x)|^ph(u(x))\,dx \leq C(n,p)\int_{\Omega} \Big( \sqrt{ |\nabla^{(2)} u(x)| |{\mathcal T}_{h,C}(u(x))|}\Big)^{p}h(u(x))\,dx, \] where $\Omega\subset \mathbb R^n$ and $n\ge 2$, $u\colon\Omega\rightarrow \mathbb R$ is in certain subset in second order Sobolev space $W^{2,1}_{\rm loc}(\Omega)$, $\nabla^{(2)} u$ is the Hessian matrix of $u$, ${\mathcal T}_{h,C}(u)$ is a certain transformation of the continuous function $h(\,\cdot\,)$. Such inequality is the generalization of a similar inequality holding in one dimension, obtained earlier by second author and Peszek.

Article information

Topol. Methods Nonlinear Anal., Volume 52, Number 1 (2018), 49-67.

First available in Project Euclid: 24 April 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Choczewski, Tomasz; Kałamajska, Agnieszka. On certain variant of strongly nonlinear multidimensional interpolation inequality. Topol. Methods Nonlinear Anal. 52 (2018), no. 1, 49--67. doi:10.12775/TMNA.2017.050.

Export citation


  • S. Bloom, First and second order Opial inequalities, Studia Math. 126 (1997), no. 1, 27–50.
  • R. Brown, V. Burenkov, S. Clark and D. Hinton, Second order Opial inequalities in ${\Cal L}^p$ spaces and applications, Analytic and Geometric Inequalities and Applications (Rassias, Themistocles et al., eds.), Mathematics and its Applications, vol. 478, pp. 37–52, Kluwer, Dordrecht, 1999.
  • C. Capogne, A. Fiorenza and A. Kałamajska, Strongly nonlinear Gagliardo–Nirenberg inequality in Orlicz spaces and Boyd indices, Rend. Lincei Mat. Appl. 28 (2017), 119–141.
  • P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Courant Lecture Notes in Mathematics, New York, Providence, 2010.
  • H. Federer, Geometric Measure Theory, Springer, New York, 1969.
  • E. Fermi, Un methodo statistico par la determinazione di alcune properitá dell' atoma, Rend. Accad. Naz. del Lincei Cl. Sci. Fis. Mat. e Nat. 6 (1927), 602–607.
  • E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 8 (1959), 24–51.
  • A. Kałamajska and K. Mazowiecka, Some regularity results to the generalized Emden–Fowler equation with irregular data, Math. Methods Appl. Sci. 38 (2015), no. 12, 2479–2495.
  • A. Kałamajska and J. Peszek, On some nonlinear extensions of the Gagliardo–Nirenberg inequality with applications to nonlinear eigenvalue problems, Asymptot. Anal. 77 (2012), no. 3–4, 169–196.
  • A. Kałamajska and J. Peszek, On certain generalizations of the Gagliardo–Nirenberg inequality and their applications to capacitary estimates and isoperimetric inequalities, J. Fixed Point Theory Appl. 13 (2013), no. 1, 271–290.
  • A. Kałamajska and K. Pietruska-Pałuba, Gagliardo–Nirenberg inequalities in Orlicz spaces, Indiana Univ. Math. J. 55 (2006), no. 6, 1767–1789.
  • A. Kufner, O. John and S. Fučík, Function Spaces, Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff, Leyden; Academia, Prague, 1977.
  • V.G. Mazy'a, Sobolev Spaces, Springer, Berlin, 1985.
  • L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. di Pisa 13 (1959), 115–162.
  • Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29–32.
  • J. Peszek, Discrete Cucker–Smale flocking model with a weakly singular weight, SIAM J. Math. Anal. 47 (2015), no. 5, 3671–3686.
  • L.H. Thomas, The calculation of atomic fields, Proc. Camb. Phil. Soc. 23 (1927), 1473–1484.