Topological Methods in Nonlinear Analysis
- Topol. Methods Nonlinear Anal.
- Volume 49, Number 1 (2017), 377-380.
Michael's selection theorem for a mapping definable in an o-minimal structure defined on a set of dimesion 1
Małgorzata Czapla and Wiesław Pawłucki
Abstract
Let $R$ be a real closed field and let some o-minimal structure extending $R$ be given. Let $F\colon X \rightrightarrows R^m$ be a definable multivalued lower semicontinuous mapping with nonempty definably connected values defined on a definable subset $X$ of $R^n$ of dimension $1$ ($X$ can be identified with a finite graph immersed in $R^n$). Then $F$ admits a definable continuous selection.
Article information
Source
Topol. Methods Nonlinear Anal., Volume 49, Number 1 (2017), 377-380.
Dates
First available in Project Euclid: 11 April 2017
Permanent link to this document
https://projecteuclid.org/euclid.tmna/1491876035
Digital Object Identifier
doi:10.12775/TMNA.2016.092
Mathematical Reviews number (MathSciNet)
MR3635651
Zentralblatt MATH identifier
1372.14050
Citation
Czapla, Małgorzata; Pawłucki, Wiesław. Michael's selection theorem for a mapping definable in an o-minimal structure defined on a set of dimesion 1. Topol. Methods Nonlinear Anal. 49 (2017), no. 1, 377--380. doi:10.12775/TMNA.2016.092. https://projecteuclid.org/euclid.tmna/1491876035