Topological Methods in Nonlinear Analysis

Multiplicity results for nonlocal fractional $p$-Kirchhoff equations via Morse theory

Binlin Zhang, Giovanni Molica Bisci, and Mingqi Xiang

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we apply Morse theory and local linking to study the existence of nontrivial solutions for Kirchhoff type equations involving the nonlocal fractional $p$-Laplacian with homogeneous Dirichlet boundary conditions: \[ \begin{cases} \bigg[M\bigg(\displaystyle\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}\,dxdy\bigg)\bigg]^{p-1} (-\Delta)_p^su(x)=f(x,u)&\mbox{in }\Omega,\\ u=0&\mbox{in } \mathbb{R}^{N}\setminus\Omega, \end{cases} \] where $\Omega$ is a smooth bounded domain of $\mathbb{R}^N$, $(-\Delta)_p^s$ is the fractional $p$-Laplace operator with $0<s<1<p<\infty$ with $sp<N$, $M \colon \mathbb{R}^{+}_{0}\rightarrow \mathbb{R}^{+}$ is a continuous and positive function not necessarily satisfying the increasing condition and $f$ is a Carathéodory function satisfying some extra assumptions.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 49, Number 2 (2017), 445-461.

Dates
First available in Project Euclid: 14 March 2017

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1489457023

Digital Object Identifier
doi:10.12775/TMNA.2016.081

Mathematical Reviews number (MathSciNet)
MR3670468

Zentralblatt MATH identifier
1370.35270

Citation

Zhang, Binlin; Molica Bisci, Giovanni; Xiang, Mingqi. Multiplicity results for nonlocal fractional $p$-Kirchhoff equations via Morse theory. Topol. Methods Nonlinear Anal. 49 (2017), no. 2, 445--461. doi:10.12775/TMNA.2016.081. https://projecteuclid.org/euclid.tmna/1489457023


Export citation