## Topological Methods in Nonlinear Analysis

- Topol. Methods Nonlinear Anal.
- Volume 48, Number 2 (2016), 613-636.

### Semilinear inclusions with nonlocal conditions without compactness in non-reflexive spaces

Irene Benedetti and Martin Väth

**Full-text: Access denied (no subscription detected) **

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

#### Abstract

An existence result for an abstract nonlocal boundary value problem $x'\in A(t)x(t)+F(t,x(t))$, $Lx\in B(x)$, is given, where $A(t)$ determines a linear evolution operator, $L$ is linear, and $F$ and $B$ are multivalued. To avoid compactness conditions, the weak topology is employed. The result applies also in nonreflexive spaces under a hypothesis concerning the De Blasi measure of noncompactness. Even in the case of initial value problems, the required condition is essentially milder than previously known results.

#### Article information

**Source**

Topol. Methods Nonlinear Anal., Volume 48, Number 2 (2016), 613-636.

**Dates**

First available in Project Euclid: 21 December 2016

**Permanent link to this document**

https://projecteuclid.org/euclid.tmna/1482289232

**Digital Object Identifier**

doi:10.12775/TMNA.2016.061

**Mathematical Reviews number (MathSciNet)**

MR3642776

**Zentralblatt MATH identifier**

1365.34106

#### Citation

Benedetti, Irene; Väth, Martin. Semilinear inclusions with nonlocal conditions without compactness in non-reflexive spaces. Topol. Methods Nonlinear Anal. 48 (2016), no. 2, 613--636. doi:10.12775/TMNA.2016.061. https://projecteuclid.org/euclid.tmna/1482289232

#### References

- R.P. Agarwal, D. O'Regan and M.-A. Taoudi,
*Fixed point theory for multivalued weakly convex-power condensing mappings with applications to integral inclusions*, Mem. Differential Equations Math. Phys.**57**(2012), 17–40. - R.R. Akhmerov, M.I. Kamenskiĭ, A.S. Potapov, A.E. Rodkina and B.N. Sadovskiĭ,
*Measures of Noncompactness and Condensing Operators*, Birkhäuser, Basel, Boston, Berlin, 1992. - J.N. Ball,
*Strongly continuous semigroups, weak solutions, and the variation of constants formula*, Proc. Amer. Math. Soc.**63**(1977), 370–373. - M.M. Basova and V.V. Obukhovskiĭ,
*On some boundary-value problems for functional-differential inclusions in Banach*spaces, J. Math. and Sci.**149**(2008), 1376–1384.Mathematical Reviews (MathSciNet): MR2336427 - I. Benedetti, N.V. Loi and L. Malaguti,
*Nonlocal problems for differential inclusions in Hilbert*spaces, Set-Valued Var. Anal.**22**(2014), 639–656.Mathematical Reviews (MathSciNet): MR3252085

Zentralblatt MATH: 1312.34097

Digital Object Identifier: doi:10.1007/s11228-014-0280-9 - I. Benedetti, L. Malaguti land V. Taddei,
*Semilinear evolution equations in abstract spaces and applications*, Rend. Istit. Mat. Univ. Trieste**44**(2012), 371–388. - ––––,
*Nonlocal semilinear evolution equations without strong compactness: Theory and applications*, Bound. Value Probl.**22**(2013), 1–18. - L. Byszewski,
*Theorems about the existence and uniquencess of a solutions of a semilinear evolution nonlocal Cauchy*problem, J. Math. Anal. Appl.**162**(1991), 495–505.Mathematical Reviews (MathSciNet): MR1137634

Zentralblatt MATH: 0748.34040

Digital Object Identifier: doi:10.1016/0022-247X(91)90164-U - T. Cardinali and P. Rubbioni,
*Multivalued fixed point theorems in terms of weak topology and measure of weak noncompactness*, J. Math. Anal. Appl.**405**(2013), 409–415.Mathematical Reviews (MathSciNet): MR3061020

Zentralblatt MATH: 1306.54042

Digital Object Identifier: doi:10.1016/j.jmaa.2013.03.045 - B. Cascales, V.M. Kadets and J. Rodríguez,
*Measurability and selections of multi-functions in Banach*spaces, J. Convex Anal.**17**(2010), 229–240. - C. Castaing and M. Valadier,
*Convex Analysis and Measurable Multifunctions*, Lect. Notes Math. vol. 558, Springer, Berlin, New York, 1977. - M. Cichoń,
*On bounded weak solutions of a nonlinear differential equation in Banach*spaces, Funct. Approx. Comment. Math.**21**(1992), 27–35. - F.S. De Blasi,
*On a property of the unit sphere in a Banach*space, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)**21**(1977), 259–262. - J. Diestel, W.M. Ruess and W. Schachermayer,
*Weak compactness in $L^1(\mu,X)$*, Proc. Amer. Math. Soc.**118**(1993), 447–453. - N. Dunford and J.T. Schwartz,
*Linear Operators \romI*, Int. Publ., New York, 3rd edition, 1966. - K. Fan,
*Fixed point and minimax theorems in locally convex topological linear spaces*, Proc. Nat. Acad. Sci. U.S.A.**38**(1952), 121–126. - I. Gohberg, S. Goldberg and M.A. Kaashoek,
*Classes of Linear Operators*, Vol. I, Birkhäuser, Basel, Boston, Berlin, 1990. - A.M. Gomaa,
*On theorems for weak solutions of nonlinear differential equations with and without delay in Banach*spaces, Ann. Soc. Math. Polon. Ser. I Comment. Math. Prace Mat.**47**(2007), 179–191. - C.J. Himmelberg,
*Measurable relations*, Fund. Math.**87**(1975), 53–72. - M.I. Kamenskiĭ, V.V. Obukhovskiĭ and P. Zecca,
*Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach*Spaces, de Gruyter, Berlin, 2001. - S.S. Khurana and J. Vielma,
*Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions*, J. Math. Anal. Appl.**195**(1995), 251–260. - S.G. Kreǐn,
*Linear Differential Equations in Banach Space*, Nauka, Moscow, 1967 (in Russian); English transl.: Providence, R.I., Amer. Math. Soc. 1971. - M. Kunze and G. Schlüchtermann,
*Strongly generated Banach*spaces and measures of noncompactness, Math. Nachr.**191**(1998), 197–214. - V.V. Obukhovskiĭ,
*On the topological degree for a class of noncompact multivalued mappings*, Funkt. Anal., Ul'yanovsk**23**(1984), 82–93 (in Russian). - D. Ozdarska and S. Szufla,
*Weak solutions of a boundary value problem for nonlinear ordinary differential equations of second order in Banach*spaces, Math. Slovaca**43**(1993), 301–307. - N.S. Papageorgiou,
*Existence of solutions for boundary value problems of semilinear evolution inclusions*, Indian J. Pure Appl. Math.**23**(1992), 477–488. - B.N. Sadovskiĭ,
*Limit-compact and condensing operators*, Uspekhi Mat. Nauk**27**(1972), 81–146 (in Russian); Engl. transl.: Russian Math. Surveys**27**(1972), no. 1, 85–155. - M. Väth,
*Ideal Spaces*, Lect. Notes in Math., vol. 1664, Springer, Berlin, Heidelberg, 1997. - ––––,
*Fixed point theorems and fixed point index for countably condensing maps*, Topol. Methods Nonlinear Anal.**13**(1999), 341–363. - ––––,
*An axiomatic approach to a coincidence index for noncompact function pairs*, Topol. Methods Nonlinear Anal.**16**(2000), 307–338. - ––––,
*Coincidence points of function pairs based on compactness properties*, Glasgow Math. J.**44**(2002), 209–230. - ––––,
*Integration Theory. A Second Course*, World Scientific Publ., Singapore, New Jersey, London, Hong Kong, 2002. - ––––,
*Continuity of single- and multivalued superposition operators in generalized ideal spaces of measurable vector functions*, Nonlinear Functional Anal. Appl.**11**(2006), 607–646. - ––––,
*Topological Analysis. From*the Basics to the Triple Degree for Nonlinear Fredholm Inclusions, de Gruyter, Berlin, New York, 2012. - H. Vogt,
*An Eberlein*–Šmulian type result for the weak$^*$ topology, Arch. Math. (Basel)**95**(2010), 31–34. - I.I. Vrabie,
*Compactness Methods for Nonlinear Evolutions*, Pitman Publ., Oxford, 2nd edition, 1987. - ––––,
*$C_0$-Semigroups and Applications*, Elsevier, Amsterdam, 2nd edition, 2003. - R. Whitley,
*An elementary proof of the Eberlein*–Šmulian theorem, Math. Ann.**172**(1967), 116–118.

### More like this

- Existence of Mild Solutions for a Semilinear Integrodifferential Equation with Nonlocal Initial Conditions

Lizama, Carlos and Pozo, Juan C., Abstract and Applied Analysis, 2012 - Existence of solutions on compact and non-compact
intervals for semilinear impulsive differential inclusions with delay

Benedetti, Irene and Rubbioni, Paola, Topological Methods in Nonlinear Analysis, 2008 - Approximate controllability for abstract semilinear impulsive functional differential inclusions based on Hausdorff product measures

Xiao, Jian-Zhong and Zhu, Xing-Hua, Topological Methods in Nonlinear Analysis, 2018

- Existence of Mild Solutions for a Semilinear Integrodifferential Equation with Nonlocal Initial Conditions

Lizama, Carlos and Pozo, Juan C., Abstract and Applied Analysis, 2012 - Existence of solutions on compact and non-compact
intervals for semilinear impulsive differential inclusions with delay

Benedetti, Irene and Rubbioni, Paola, Topological Methods in Nonlinear Analysis, 2008 - Approximate controllability for abstract semilinear impulsive functional differential inclusions based on Hausdorff product measures

Xiao, Jian-Zhong and Zhu, Xing-Hua, Topological Methods in Nonlinear Analysis, 2018 - Hausdorff product measures and $C^1$-solution sets of abstract semilinear functional differential inclusions

Xiao, Jian-Zhong, Wang, Zhi-Yong, and Liu, Juan, Topological Methods in Nonlinear Analysis, 2017 - Exact Controllability of Semilinear Stochastic Evolution
Equation

Barraez, D., Leiva, H., Merentes, Nelson, and Narváez, Miguel, African Diaspora Journal of Mathematics, 2011 - Filippov-Ważewski theorems and structure of solution
sets for first order impulsive semilinear functional differential inclusions

Djebali, Smaïl, Górniewicz, Lech, and Ouahab, Abdelghani, Topological Methods in Nonlinear Analysis, 2008 - On a controllability problem for systems governed by semilinear functional differential inclusions in Banach spaces

Obukhovskiĭ, Valeri and Rubbioni, Paola, Topological Methods in Nonlinear Analysis, 2000 - Topological Structure of the Solutions Set of Impulsive Semilinear Differential
Inclusions with Nonconvex Right-Hand Side

Benchohra, M., Nieto, J. J., and Ouahab, A., African Diaspora Journal of Mathematics, 2014 - Solutions of implicit evolution inclusions with pseudo-monotone mappings

Bian, Wenming M., Topological Methods in Nonlinear Analysis, 2000 - A second order differential inclusion with proximal
normal cone in Banach spaces

Aliouane, Fatine and Azzam-Laouir, Dalila, Topological Methods in Nonlinear Analysis, 2014