Topological Methods in Nonlinear Analysis

Homoclinics for an almost periodically forced singular Hamiltonian system

Paul H. Rabinowitz

Full-text: Open access

Article information

Source
Topol. Methods Nonlinear Anal., Volume 6, Number 1 (1995), 49-66.

Dates
First available in Project Euclid: 16 November 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1479265348

Mathematical Reviews number (MathSciNet)
MR1391944

Zentralblatt MATH identifier
0857.34049

Citation

Rabinowitz, Paul H. Homoclinics for an almost periodically forced singular Hamiltonian system. Topol. Methods Nonlinear Anal. 6 (1995), no. 1, 49--66. https://projecteuclid.org/euclid.tmna/1479265348


Export citation

References

  • \ref\no1M. L. Bertotti and S. Bolotin, Homoclinic solutions of quasiperiodic Lagrangian systems, preprint (1994)
  • \ref\no2U. Bessi, A variational proof of a Sitnikov-like theorem , Nonlinear Anal., 20 (1993), 1303–1318
  • \ref\no3H. Bohr, Almost Periodic Functions, Chelsea(1943)
  • \ref\no4S. V. Bolotin, Homoclinic orbits to invariant tori of symplectic diffeomorphisms and Hamiltonian systems, preprint
  • \ref\no5B. Buffoni and E. Séré, A global condition for quasi-random behaviour in a class of conservative systems, preprint (1995)
  • \ref\no6P. Caldiroli and P. Montecchiari, Homoclinic orbits for second order Hamiltonian systems with potential changing sign , Comm. Appl. Nonlinear Anal., 1 (1994), 97–129
  • \ref\no7P. Caldiroli and M. Nolasco, Multiple homoclinic solutions for a class of autonomous singular systems in $\R^2$, preprint
  • \ref\no8V. Coti Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems , Math. Ann., 288 (1990), 133–160
  • \ref\no9V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials , J. Amer. Math. Soc., 4 (1991), 693–727 \ref\no10––––, Multibump periodic solutions of a family of Hamiltonian systems , Topol. Methods Nonlinear Anal., 4 (1995), 31–57
  • \ref\no11W. B. Gordon, Conservative dynamical systems involving strong forces , Trans. Amer. Math. Soc., 204 (1975), 113–135
  • \ref\no12B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press(1982)
  • \ref\no13J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag (1989)
  • \ref\no14P. Montecchiari and N. Nolasco, Multibump solutions for perturbations of periodic second order Hamiltonian systems , Nonlinear Anal., to appear
  • \ref\no15P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations , CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc. (1986) \ref\no16––––, Periodic and heteroclinic orbits for a periodic Hamiltonian system , Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 331–346 \ref\no17––––, Homoclinics for a singular Hamiltonian system, Geometric Analysis and the Calculus of Variations(J. Jost, ed.), International Press, to appear \ref\no18––––, Multibump solutions of differential equations , Chinese J. Math., to appear
  • \ref\no19E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems , Math. Z., 209 (1992), 27–42
  • \ref\no20E. Séré, Looking for the Bernoulli shift , Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1992), 561–590
  • \ref\no21E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, preprint (1994)
  • \ref\no22K. H. Strobel, Multibump solutions for a class of periodic Hamiltonian systems, Thesis, University of Wisconsin (1994)
  • \ref\no23K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system , Ann. Inst. H. Poincaré Anal. Non Linéaire, 7(1990), 427–438