Topological Methods in Nonlinear Analysis

Fixed point theorems and characterizations of metric completeness

Tomonari Suzuki and Wataru Takahashi

Full-text: Open access

Article information

Source
Topol. Methods Nonlinear Anal., Volume 8, Number 2 (1996), 371-382.

Dates
First available in Project Euclid: 16 November 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1479265247

Mathematical Reviews number (MathSciNet)
MR1483635

Zentralblatt MATH identifier
0902.47050

Citation

Suzuki, Tomonari; Takahashi, Wataru. Fixed point theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. 8 (1996), no. 2, 371--382. https://projecteuclid.org/euclid.tmna/1479265247


Export citation

References

  • J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions , Trans. Amer. Math. Soc., 215 (1976), 241–251 \ref \key 2
  • M. Edelstein, An extension of Banach's contraction principle , Proc. Amer. Math. Soc., 12 (1961), 7–10 \ref \key 3
  • I. Ekeland, Nonconvex minimization problems , Bull. Amer. Math. Soc., 1 (1979), 443–474 \ref \key 4
  • O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces , Math. Japon., 44 (1996), 381–391 \ref \key 5
  • S. B. Nadler Jr., Multi-valued contraction mappings , Pacific J. Math., 30 (1969), 475–488 \ref \key 6
  • S. Park and G. Kang, Generalizations of the Ekeland type variational principles , Chinese J. Math., 21 (1993), 313–325 \ref \key 7
  • W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings , Fixed Point Theory and Applications (M. A. Théra and J. B. Baillon eds.), Pitman Res. Notes Math., 252 , Longman Sci. Tech., 397–406 \ref \key 8
  • J. D. Weston, A characterization of metric completeness , Proc. Amer. Math. Soc., 64 (1977), 186–188