Topological Methods in Nonlinear Analysis

On the existence of homoclinic orbits for the asymptotically periodic Duffing equation

Francesca Alessio, Paolo Caldiroli, and Piero Montecchiari

Full-text: Open access

Article information

Source
Topol. Methods Nonlinear Anal., Volume 12, Number 2 (1998), 275-292.

Dates
First available in Project Euclid: 19 October 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1476843832

Mathematical Reviews number (MathSciNet)
MR1701264

Zentralblatt MATH identifier
0931.34028

Citation

Alessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero. On the existence of homoclinic orbits for the asymptotically periodic Duffing equation. Topol. Methods Nonlinear Anal. 12 (1998), no. 2, 275--292. https://projecteuclid.org/euclid.tmna/1476843832


Export citation

References

  • S. Abenda, P. Caldiroli and P. Montecchiari, Multibump solutions for Duffing–like systems , Rend. Istit. Mat. Univ. Trieste, 28 (1996), 115–143 \ref
  • S. Alama and Y. Y. Li, On “multibump” bound states for certain semilinear elliptic equations , J. Differential Equations, 96 (1992), 89–115 \ref
  • F. Alessio, P. Caldiroli and P. Montecchiari, Genericity of the multibump dynamics for almost periodic Duffing-like systems , Proc. Roy. Soc. Edinburgh Sect. A, to appear \ref ––––, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\R^{N}$ , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), to appear ;, On the existence of infinitely many solutions for a class of semilinear elliptic equations in $\R^{N}$ , Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9), 9 (1998), 157–165 \ref
  • A. Ambrosetti and M. Badiale, Variational perturbative methods in bifurcation of bound states from the essential spectrum , Proc. Roy. Soc. Edinburgh Sect. A, to appear \ref
  • A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equation in ${\R}^n$ , Rev. Mat. Iberoamericana, 6 (1990), 1–15 \ref
  • A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains , Ann. Inst. H. Poincaré, Anal. Non Linéaire, 14 (1997), 365–413 \ref
  • H. Berestycki and P.-L. Lions, Nonlinear scalar filed equations, I, II , Arch. Rational Mech. Anal., 82 (1983), 313–376 \ref
  • D. M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in ${\R}^n$ , Nonlinear Anal., 15 (1990), 1045–1052 \ref
  • V. Coti Zelati, I. Ekeland, and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems , Math. Ann., 288 (1990), 133–160 \ref
  • V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic \romPDE on $\R^n$, Comm. Pure Appl. Math., 45 (1992), 1217–1269 \ref
  • W. Y. Ding and W. M. Ni, On the existence of a positive entire solution of a semilinear elliptic equation , Arch. Rational Mech. Anal., 91 (1986), 283–308 \ref
  • P. J. Holmes and C. A. Stuart, Homoclinic orbits for eventually autonomous planar flows , Z. Angew. Math. Phys., 43 (1992), 598–625 \ref
  • M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\R^{n}$ , Arch. Rational Mech. Anal., 105 (1989), 243–266 \ref
  • P.-L. Lions, The concentration–compactness principle in the calculus of variations: the locally compact case, Part I and II , Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109–145 and 223–283 \ref
  • P. Montecchiari, Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems , Ann. Mat. Pura Appl. (4), 168 (1995), 317–354 \ref
  • P. Montecchiari, M. Nolasco and S. Terracini, A global condition for periodic Duffing-like equations , Trans. Amer. Math. Soc., to appear \ref
  • E. Montefusco, Perturbation results for semilinear elliptic equations in $\R^{n}$ , Comm. Appl. Nonlinear Anal., 5 (1998), 39–51 \ref
  • E. Séré, Looking for the Bernoulli shift , Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 561–590 \ref
  • G. S. Spradlin, A perturbation of a periodic Hamiltonian system , preprint (1997) \ref
  • C. A. Stuart, Bifurcation of homoclinic orbits and bifurcation from the essential spectrum , SIAM J. Math. Anal., 20 (1989), 1145–1171 \ref
  • S. Wiggins, Global bifurcations and chaos, Appl. Math. Sci., Springer (1988)