Topological Methods in Nonlinear Analysis

The space of loops on configuration spaces and the Majer-Terracini index

Edward Fadell and Sufian Husseini

Full-text: Open access

Article information

Source
Topol. Methods Nonlinear Anal., Volume 11, Number 2 (1998), 249-271.

Dates
First available in Project Euclid: 19 October 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1476842829

Mathematical Reviews number (MathSciNet)
MR1659462

Zentralblatt MATH identifier
0918.55001

Citation

Fadell, Edward; Husseini, Sufian. The space of loops on configuration spaces and the Majer-Terracini index. Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 249--271. https://projecteuclid.org/euclid.tmna/1476842829


Export citation

References

  • A. Bahri and P. H. Rabinowitz, Periodic solutions of Hamiltonian systems of n-body type , J. Analyse Linéaire, 8 (1991), 561–649 \ref
  • R. Bott and H. Samelson, On the Pontryagin product in spaces of paths , Comment. Math. Helv., 27 (1953), 320–337 \ref
  • F. Cohen and L. R. Taylor, Configuration spaces; Applications to Gelfand–Fuks cohomology , Bull. Amer. Math. Soc., 84 (1978), 134–136 \ref
  • A. Dold, Über fasernweise Homotopieäquivalenz von Fäserräumen , Math. Z., 62 (1955), 111–136 \ref
  • E. Fadell, On homotopy groups of configuration spaces and the string problem of Dirac , Duke Math. J., 29 (), 231–242 \ref
  • E. Fadell and S. Y. Husseini, A note on the category of the free loop space , Proc. Amer. Math. Soc., 107 (1989), 527–536 \ref ––––, Infinite cup length in free loop spaces with an application to a problem of N-body type , Annales de l'Institut Poincaré, Analyse Non Linéaire, 9 (1992), 305–319 \ref ––––, Category of loop spaces of open subsets in Euclidean space , J. Nonlinear Anal., 17 (1991), 1153–1161 \ref ––––, Relative category, products and coproducts , Rend. Sem. Mat. Fis. Milano, 64 (1994), 99–115 \ref ––––, On the growth properties of the homology of free loop spaces of configuration spaces , Proceedings of the First World Congress of Nonlinear Analysts, Walter de Gruyter, Berlin and New York (1996), 2127–2134 \ref ––––, Geometry and topology of configuration spaces, to appear \ref
  • P. J. Hilton, On the homotopy groups of the union of spheres , J. London Math. Soc., 30 (1955), 154–172 \ref
  • T. Kohno, Monodromy repesentations of braid groups and Yang–Baxter equations , Ann. Inst. Fourier, 37 (1987), 139–160 \ref ––––, Linear representations of braid groups and classical Yang–Baxter equations , Contemp. Math., 78 (1988), 339–363 \ref
  • P. Majer and S. Terracini, Periodic solutions to some N-body type problems: the fixed energy case , Duke Math. J., 69 (1993), 683-697 \ref ––––, Periodic solutions to some problems of N-body type , Arch. Rational Mech. Anal., 124 (1993), 381-404 \ref ––––, Multiple periodic solutions to come N-body type problems via a collision index , Dipart. Mat. Politec. Milano, Preprint, 64 (1962), 1–16 \ref
  • R. S. Palais, Homotopy theory of infinite dimensional manifolds , Topology, 5 (1966), 1–16 \ref
  • H. Samelson, A connection between the Whitehead and the Pontryagin product , Amer. J. Math., 75 (1953), 744-772 \ref
  • G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, Berlin, New York (1978)