Topological Methods in Nonlinear Analysis
- Topol. Methods Nonlinear Anal.
- Volume 11, Number 2 (1998), 249-271.
The space of loops on configuration spaces and the Majer-Terracini index
Edward Fadell and Sufian Husseini
Full-text: Open access
Article information
Source
Topol. Methods Nonlinear Anal., Volume 11, Number 2 (1998), 249-271.
Dates
First available in Project Euclid: 19 October 2016
Permanent link to this document
https://projecteuclid.org/euclid.tmna/1476842829
Mathematical Reviews number (MathSciNet)
MR1659462
Zentralblatt MATH identifier
0918.55001
Citation
Fadell, Edward; Husseini, Sufian. The space of loops on configuration spaces and the Majer-Terracini index. Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 249--271. https://projecteuclid.org/euclid.tmna/1476842829
References
- A. Bahri and P. H. Rabinowitz, Periodic solutions of Hamiltonian systems of n-body type , J. Analyse Linéaire, 8 (1991), 561–649 \refMathematical Reviews (MathSciNet): MR1145561
- R. Bott and H. Samelson, On the Pontryagin product in spaces of paths , Comment. Math. Helv., 27 (1953), 320–337 \ref
- F. Cohen and L. R. Taylor, Configuration spaces; Applications to Gelfand–Fuks cohomology , Bull. Amer. Math. Soc., 84 (1978), 134–136 \refMathematical Reviews (MathSciNet): MR461522
Digital Object Identifier: doi:10.1090/S0002-9904-1978-14440-1
Project Euclid: euclid.bams/1183540391 - A. Dold, Über fasernweise Homotopieäquivalenz von Fäserräumen , Math. Z., 62 (1955), 111–136 \ref
- E. Fadell, On homotopy groups of configuration spaces and the string problem of Dirac , Duke Math. J., 29 (), 231–242 \refMathematical Reviews (MathSciNet): MR141127
Digital Object Identifier: doi:10.1215/S0012-7094-62-02924-1
Project Euclid: euclid.dmj/1077470129 - E. Fadell and S. Y. Husseini, A note on the category of the free loop space , Proc. Amer. Math. Soc., 107 (1989), 527–536 \ref ––––, Infinite cup length in free loop spaces with an application to a problem of N-body type , Annales de l'Institut Poincaré, Analyse Non Linéaire, 9 (1992), 305–319 \ref ––––, Category of loop spaces of open subsets in Euclidean space , J. Nonlinear Anal., 17 (1991), 1153–1161 \ref ––––, Relative category, products and coproducts , Rend. Sem. Mat. Fis. Milano, 64 (1994), 99–115 \ref ––––, On the growth properties of the homology of free loop spaces of configuration spaces , Proceedings of the First World Congress of Nonlinear Analysts, Walter de Gruyter, Berlin and New York (1996), 2127–2134 \ref ––––, Geometry and topology of configuration spaces, to appear \refMathematical Reviews (MathSciNet): MR984789
Digital Object Identifier: doi:10.1090/S0002-9939-1989-0984789-4 - P. J. Hilton, On the homotopy groups of the union of spheres , J. London Math. Soc., 30 (1955), 154–172 \ref
- T. Kohno, Monodromy repesentations of braid groups and Yang–Baxter equations , Ann. Inst. Fourier, 37 (1987), 139–160 \ref ––––, Linear representations of braid groups and classical Yang–Baxter equations , Contemp. Math., 78 (1988), 339–363 \ref
- P. Majer and S. Terracini, Periodic solutions to some N-body type problems: the fixed energy case , Duke Math. J., 69 (1993), 683-697 \ref ––––, Periodic solutions to some problems of N-body type , Arch. Rational Mech. Anal., 124 (1993), 381-404 \ref ––––, Multiple periodic solutions to come N-body type problems via a collision index , Dipart. Mat. Politec. Milano, Preprint, 64 (1962), 1–16 \refMathematical Reviews (MathSciNet): MR1208817
Digital Object Identifier: doi:10.1215/S0012-7094-93-06929-3
Project Euclid: euclid.dmj/1077293733 - R. S. Palais, Homotopy theory of infinite dimensional manifolds , Topology, 5 (1966), 1–16 \refMathematical Reviews (MathSciNet): MR189028
Digital Object Identifier: doi:10.1016/0040-9383(66)90002-4 - H. Samelson, A connection between the Whitehead and the Pontryagin product , Amer. J. Math., 75 (1953), 744-772 \ref
- G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, Berlin, New York (1978) Mathematical Reviews (MathSciNet): MR516508
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Mod p truncated configuration spaces
YAMAGUCHI, Kohhei, Journal of the Mathematical Society of Japan, 2004 - The homology of configuration spaces of trees with loops
Chettih, Safia and Lütgehetmann, Daniel, Algebraic & Geometric Topology, 2018 - Cycle Index Sum for Non-$k$-Equal Configurations
Grossnickle, Keely and Turchin, Victor, Bulletin of the Belgian Mathematical Society - Simon Stevin, 2018
- Mod p truncated configuration spaces
YAMAGUCHI, Kohhei, Journal of the Mathematical Society of Japan, 2004 - The homology of configuration spaces of trees with loops
Chettih, Safia and Lütgehetmann, Daniel, Algebraic & Geometric Topology, 2018 - Cycle Index Sum for Non-$k$-Equal Configurations
Grossnickle, Keely and Turchin, Victor, Bulletin of the Belgian Mathematical Society - Simon Stevin, 2018 - Central configurations, Morse and fixed point indices
Ferrario, D.L., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2017 - On Markovian random networks
Le Jan, Yves, Electronic Communications in Probability, 2019 - Chen-Souriau Calculus for Rough Loops
Léandre, Rémi, , 2008 - A refinement of Betti numbers and homology in the presence of a continuous function, I
Burghelea, Dan, Algebraic & Geometric Topology, 2017 - The exponential map of a weak Riemannian Hilbert manifold
Biliotti, Leonardo, Illinois Journal of Mathematics, 2004 - The Verlinde formula as fixed point formulas
Alekseev, A., Meinrenken, E., and Woodward, C., Journal of Symplectic Geometry, 2001 - The spectra of Jacobi operators for Constant Mean Curvature Tori
of Revolution in the $3$-sphere
ROSSMAN, Wayne and SULTANA, Nahid, Tokyo Journal of Mathematics, 2008


