Topological Methods in Nonlinear Analysis

Forced singular oscillators and the method of lower and upper solutions

Denis Bonheure and Colette De Coster

Full-text: Open access

Abstract

In this note, we study the existence of positive periodic solutions of the second order differential equation $$ u''+g(u)u'+f(t,u)=h(t) $$ where $f(t,\cdot)$ has a singularity of repulsive type at the origin. We use the method of lower and upper solutions.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 22, Number 2 (2003), 297-317.

Dates
First available in Project Euclid: 30 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1475266338

Mathematical Reviews number (MathSciNet)
MR2036378

Zentralblatt MATH identifier
1108.34033

Citation

Bonheure, Denis; De Coster, Colette. Forced singular oscillators and the method of lower and upper solutions. Topol. Methods Nonlinear Anal. 22 (2003), no. 2, 297--317. https://projecteuclid.org/euclid.tmna/1475266338


Export citation

References

  • D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance , Discrete Contin. Dynam. Systems, 8 (2002), 907–930 \ref\key 2, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results , Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations (F. Zanolin, ed.), Springer, New York, C.I.S.M. Courses and Lectures, 371 (1996), 1–79 \ref\key 3
  • C. De Coster and P. Habets, The lower and upper solutions method for boundary value problems , to appear, Handbook of Differential Equations, Section: Ordinary Differential Equations (A. Cañada, P. Drabek and A. Fonda, eds.), Elsevier Science BV, North Holland \ref\key 4, Calc. Var. Partial Differential Equations, 15 (2002), 25–44 \ref\key 5, J. Differential Equations, 103 (1993), 260–277 \ref\key 6, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 231–243 \ref\key 7, Mémoire de la Classe des Sciences Académie Royale de Belgique, 8-IV (1993) \ref\key 8
  • A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations , Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 145–153 \ref\key 9, Some nonlinear differential equations with resonance at the first eigenvalue , Confer. Sem. Mat. Univ. Bari, 167 (1979), 355–389 \ref\key 10, Periodic solutions of some Lienard equations with singularities , Proc. Amer. Math. Soc., 109 (1990), 1035–1044 \ref\key 11, On periodic solutions of nonlinear differential equations with singularities , Proc. Amer. Math. Soc., 99 (1987), 109–114 \ref\key 12, preprint (2000) \ref\key 13, Differential Integral Equations, 8 (1995), 1843–1858 \ref\key 14, J. Differential Equations, 176 (2001), 445–469 \ref\key 15, J. Math. Anal. Appl., 203 (1996), 254–269 \ref\key 16, A relationship between the periodic and the Dirichlet BVPs of singular differential equations , Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1099–1114