Topological Methods in Nonlinear Analysis

Mountain pass solutions and an indefinite superlinear elliptic problem on $\mathbb R^{\mathbb N}$

Yihong Du and Yuxia Guo

Full-text: Open access


We consider the elliptic problem $$ -\Delta u-\lambda u=a(x) g(u), $$ with $a(x)$ sign-changing and $g(u)$ behaving like $u^p$, $p> 1$. Under suitable conditions on $g(u)$ and $a(x)$, we extend the multiplicity, existence and nonexistence results known to hold for this equation on a bounded domain (with standard homogeneous boundary conditions) to the case that the bounded domain is replaced by the entire space $\mathbb R^N$. More precisely, we show that there exists $\Lambda> 0$ such that this equation on $\mathbb R^N$ has no positive solution for $\lambda> \Lambda$, at least two positive solutions for $\lambda\in (0,\Lambda)$, and at least one positive solution for $\lambda\in (-\infty,0]\cup\{\Lambda\}$.

Our approach is based on some descriptions of mountain pass solutions of semilinear elliptic problems on bounded domains obtained by a special version of the mountain pass theorem. These results are of independent interests.

Article information

Topol. Methods Nonlinear Anal., Volume 22, Number 1 (2003), 69-92.

First available in Project Euclid: 30 September 2016

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Du, Yihong; Guo, Yuxia. Mountain pass solutions and an indefinite superlinear elliptic problem on $\mathbb R^{\mathbb N}$. Topol. Methods Nonlinear Anal. 22 (2003), no. 1, 69--92.

Export citation


  • S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities , Calc. Var. Partial Differential Equations, 1(1993), 439–475 \ref\key 2
  • H. Amann and J. Lopez-Gomez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems , J. Differential Equations, 146(1998), 336–374 \ref\key 3
  • T. Bartsch, Critical point theory on partially ordered Hilbert spaces , J. Funct. Anal., 186(2001), 117–152 \ref\key 4
  • H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Supperlinear indefinite elliptic problems and nonlinear Liouville theorems , Topol. Methods Nonlinear Anal., 4(1994), 59–78 \ref\key 5 ––––, Variational methods for indefinite superlinear homogeneuous elliptic problems , NoDEA Nonlinear Differential Equations Appl., 2(1995), 553–572 \ref\key 6
  • H. Berestycki and P. L. Lions, Some applications of the method of sub- and super-solutions , Lecture Notes in Math., 782 , Springer–Verlag, Berlin and New York (1980), 16–41 \ref\key 7
  • H. Brezis and L. Nirenberg, $H^1$ versus $C^1$ local minimizers , C. R. Acad. Sci. Paris Sér. I, 317(1993), 465–472 \ref\key 8
  • K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston (1993) \ref\key 9 ––––, $H^1$ versus $C^1$ isolated critical points , C.R. Acad. Sci. Paris Sér. I, 319(1994), 441–446 \ref\key 10
  • D. G. Costa, Y. Guo and M. Ramos, Existence and multiplicity results for indefinite elliptic problems in $\R^N$ , Electron. J. Differential Equations (2002, 25), 1–15 \ref\key 11
  • D.G. Costa and H. Tehrani, Existence of positive solutions for a class of indefinite elliptic problems in $\R^N$ , Calc. Var. Partial Differential Equations 13(2001), 159–189 \ref\key 12
  • E. N. Dancer and Y. Du, A note on multiple solutions of some semilinear elliptic problems , J. Math. Anal. Appl., 211(1997), 626–640 \ref\key 13
  • Y. Du, Multiplicity of positive solutions for an indefinite superlinear elliptic problem on $\R^N$ , Ann. Inst. H. Poincaré Anal. Non. Linéaire, to appear \ref\key 14
  • Y. Du and Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations , SIAM J. Math. Anal., 31(1999), 1–18 \ref\key 15
  • Y. Du and L. Ma, Logistic type equations on $\R^N$ by a squeezing method involving boundary blow-up solutions , J. London Math. Soc., 64(2001), 107–124 \ref\key 16
  • B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations , Comm. Partial Differential Equations, 6(1981), 883–901 \ref\key 17
  • D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order, Springer–Verlag(1977) \ref\key 18
  • H. Hofer, Variational and topological methods in partially ordered Hilbert spaces , Math. Ann., 261(1982), 493–514 \ref\key 19 ––––, A geometric description of the neighbourhood of a critical point given by the mountaion-pass theorem , J. London Math. Soc., 31(1985), 566–570 \ref\key 20
  • S. Li and Z-Q. Wang, Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems , J. Anal. Math., 81(2000), 373–396 \ref\key 21
  • J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer–Verlag, New York (1989) \ref\key 22
  • T. Ouyang, On the positive solutions of the semilinear equation $\Delta u+\lambda u+hu^p=0$ on compact manifolds, Part II , Indiana Univ. Math. J., 40(1991), 1083–1141 \ref\key 23
  • M. Ramos, S. Terracini and C. Troestler, Superlinear indefinite elliptic problems and Pohozaev type identities , J. Funct. Anal., 159(1998), 596–628 \ref\key 24
  • M. Struwe, Variational Methods, second ed., Springer–Verlag (1996) \ref\key 25
  • H. T. Tehrani, On indefinite superlinear elliptic equations , Calc. Var. Partial Differential Equations 4(1996), 139–153