Topological Methods in Nonlinear Analysis

Morse decompositions in the absence of uniqueness, II

Maria C. Carbinatto and Krzysztof P. Rybakowski

Full-text: Open access

Abstract

This paper is a sequel to our previous work [Morse decompositions in the absence of uniqueness, Topol. Methods Nonlinear Anal. 18 (2001), 205–242]. We first extend the concept of $\mathcal{T}$-Morse decompositions to the partially ordered case and prove a generalization of a result by Franzosa and Mischaikow characterizing partially ordered $\mathcal{T}$-Morse decompositions by the so-called $\mathcal{T}$-attractor semifiltrations. Then we extend the (regular) continuation result for Morse decompositions from [Morse decompositions in the absence of uniqueness, Topol. Methods Nonlinear Anal. 18 (2001), 205–242] to the partially ordered case. We also define singular convergence of families of "solution" sets in the spirit of our previous paper [On a general Conley index continuation principle for singular perturbation problems, Ergodic Theory Dynam. Systems 22 (2002), 729–755] and prove various singular continuation results for attractor-repeller pairs and Morse decompositions. We give a few applications of our results, e.g. to thin domain problems. The results of this paper are a main ingredient in the proof of regular and singular continuation results for the homology braid and the connection matrix in infinite dimensional Conley index theory. These topics are considered in the forthcoming publications [Continuation of the connection matrix in infinite-dimensional Conley index theory] and [Continuation of the connection matrix in singular perturbation problems].

Article information

Source
Topol. Methods Nonlinear Anal., Volume 22, Number 1 (2003), 15-51.

Dates
First available in Project Euclid: 30 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1475266316

Mathematical Reviews number (MathSciNet)
MR2037265

Zentralblatt MATH identifier
1052.37022

Citation

Carbinatto, Maria C.; Rybakowski, Krzysztof P. Morse decompositions in the absence of uniqueness, II. Topol. Methods Nonlinear Anal. 22 (2003), no. 1, 15--51. https://projecteuclid.org/euclid.tmna/1475266316


Export citation

References

  • S. Angenent and R. van der Vorst, A superquadratic indefinite elliptic system and its Morse–Conley–Floer homology , Math. Z., 231 (1999), 203–248 \ref\no \dfaCR4
  • M. C. Carbinatto and K. P. Rybakowski, Conley index continuation and thin domain problems , Topol. Methods Nonlinear Anal., 16 (2000), 201–252 \ref\no \dfaCR––––, Morse decompositions in the absence of uniqueness , Topol. Methods Nonlinear Anal., 18(2001), 205–242 \ref\no \dfaCR1––––, On a general Conley index continuation principle for singular perturbation problems , Ergodic Theory Dynam. Systems, 22 (2002), 729–755 \ref\no \dfaCR3 ––––, On convergence, admissibility and attractors for damped wave equations on squeezed domains , Proc. Roy. Soc. Edinburgh Sect. A, 132(2002), 765–791 \ref\no\dfaCR5 ––––, Continuation of the connection matrix in infinite-dimensional Conley index theory, to be submitted \ref\no\dfaCR6 ––––, Continuation of the connection matrix in singular perturbation problems, to be submitted
  • \ref\no\dfaCoC. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS 38, Amer. Math. Soc., Providence(1978) \ref\no
  • \dfaF R. Franzosa, The connection matrix theory for Morse decompositions , Trans. Amer. Math. Soc., 311 (1989), 561–592 \ref\no \dfaFM
  • R. D. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on \rom(not necessarily locally compact\rom) metric spaces, J. Differential Equations, 71 (1988), 270–287 \ref\no
  • \dfaIRM. Izydorek and K. P. Rybakowski, Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory, Fund. Math., to appear \ref\no \dfaPR
  • M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations , J. Differential Equations, 173 (2001), 271–320 \ref\no \dfaPRR
  • M. Prizzi and K. P. Rybakowski and M. Rinaldi, Curved thin domains and parabolic equations , Studia Math., 151 (2002), 109–140 \ref\no \dfaRy1
  • K. P. Rybakowski, On the homotopy index for infinite-dimensional semiflows , Trans. Amer. Math. Soc., 269 (1982), 351–382 \ref\no \dfaRy2 ––––, The Morse-index, repeller-attractor pairs and the connection index for semiflows on noncompact spaces , J. Differential Equations, 47 (1983), 66–98 \ref\no \dfaKPR ––––, The Homotopy Index and Partial Differential Equations, Springer–Verlag, Berlin (1987) \ref\no \dfaRy ––––, Conley index and singularly perturbed hyperbolic equations , to appear \ref\no \dfaRZ
  • K. P. Rybakowski and E. Zehnder, On a Morse equation in Conley's index theory for semiflows on metric spaces , Ergodic Theory Dynam. Systems, 5 (1985), 123–143