Topological Methods in Nonlinear Analysis

Reaction-diffusion equations on unbounded thin domains

Francesca Antoci and Martino Prizzi

Full-text: Open access

Abstract

We prove existence and upper semicontinuity of attractors for a reaction-diffusion equation on a family of thin unbounded domains collapsing onto a lower dimensional subspace.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 18, Number 2 (2001), 283-302.

Dates
First available in Project Euclid: 22 August 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1471876702

Mathematical Reviews number (MathSciNet)
MR1911383

Zentralblatt MATH identifier
1007.35010

Citation

Antoci, Francesca; Prizzi, Martino. Reaction-diffusion equations on unbounded thin domains. Topol. Methods Nonlinear Anal. 18 (2001), no. 2, 283--302. https://projecteuclid.org/euclid.tmna/1471876702


Export citation

References

  • A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam (1991) \ref\key 2 ––––, Attractors of partial differential evolution equations in an unbounded domain , Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221–243 \ref\key 3
  • H. Brezis, Analyse Fonctionelle, Masson, Paris(1992) \ref \key 4
  • M. Carbinatto and K. P. Rybakowski, Conley index continuation and thin domain problems , Topol. Methods Nonlinear Anal., 16 (2000), 201–251 \ref\key 5
  • G. Dal Maso, An Introduction to $\Gamma$-Convergence, PNLDE 8, Birkhäuser, Boston (1993) \ref\key 6
  • J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs 25, Amer. Math. Soc., Providence(1988) \ref \key 7
  • J. Hale and G. Raugel, Reaction-diffusion equations on thin domains , J. Math. Pures Appl. (9), 71 (1992), 33–95 \ref \key 8 ––––, A reaction-diffusion equation on a thin $L$-shaped domain , Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283–327 \ref\key 9
  • D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840 , Springer–Verlag, New York (1981) \ref\key 10
  • T. Kato, Perturbation Theory for Linear Operators, Springer–Verlag, Berlin–Heidelberg (1995) \ref\key 11
  • O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge (1991) \ref\key 12
  • M. Prizzi, A remark on reaction-diffusion equations in unbounded domains , preprint, submitted \ref \key13
  • M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations , J. Differential Equations, 237 (2001), 271–320 \ref \key 14
  • M. Prizzi and K. P. Rybakowski, Some recent results on thin domain problems , Topol. Methods Nonlinear Anal., 14 (1999), 239–255 \ref\key 15
  • G. Raugel, Dynamics of Partial Differential Equations on Thin Domains (R. Johnson, ed.), Dynamical systems. Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (CIME) held in Montecatini Terme, Italy, June 13–22, 1994. Lecture Notes in Mathematics, 1609 , Springer-Verlag, Berlin (1995), 208–315 \ref\key 16
  • R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer–Verlag, New York (1997) \ref \key 17
  • E. Vesentini, Introduction to Continuous Semigroups, Scuola Normale Superiore, Pisa (1996) \ref\key 18
  • B. Wang, Attractors for reaction-diffusion equations in unbounded domains , Physica D, 128 (1999), 41–52