Topological Methods in Nonlinear Analysis

Multiple solutions of degenerate perturbed elliptic problems involving a subcritical Sobolev exponent

Florica Şt. Cîrstea and Vicenţiu D. Rădulescu

Full-text: Open access

Abstract

We study the degenerate elliptic equation $$ -{\rm div}(a(x)\nabla u)+b(x)u= K(x)\vert u\vert ^{p-2}u+g(x)\quad \text{in } \mathbb R^{N}, $$ where $N\geq 2$ and $2< p< 2^{*}$. We assume that $a\not\equiv 0$ is a continuous, bounded and nonnegative function, while $b$ and $K$ are positive and essentially bounded in $\mathbb R^{N}$. Under some assumptions on $a,b$ and $K$, which control the location of zeros of $a$ and the behaviour of $a,b$ and $K$ at infinity we prove that if the perturbation $g$ is sufficiently small then the above problem has at least two distinct solutions in an appropriate weighted Sobolev space. The proof relies essentially on the Ekeland Variational Principle [Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443–473] and on the Mountain Pass Theorem without the Palais-Smale condition, established in Brezis-Nirenberg [Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math. 36 (1983), 437–477], combined with a weighted variant of the Brezis-Lieb Lemma [A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490], in order to overcome the lack of compactness.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 15, Number 2 (2000), 283-300.

Dates
First available in Project Euclid: 22 August 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1471873943

Mathematical Reviews number (MathSciNet)
MR1784143

Zentralblatt MATH identifier
0979.35055

Citation

Cîrstea, Florica Şt.; Rădulescu, Vicenţiu D. Multiple solutions of degenerate perturbed elliptic problems involving a subcritical Sobolev exponent. Topol. Methods Nonlinear Anal. 15 (2000), no. 2, 283--300. https://projecteuclid.org/euclid.tmna/1471873943


Export citation

References

  • A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications , J. Funct. Anal., 14 (1973), 349–381 \ref\key 2
  • A. Bahri, Topological results on a certain class of functionals and applications , J. Funct. Anal., 41 (1981), 397–427 \ref\key 3
  • A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications , Trans. Amer. Math. Soc., 267 (1981), 1–32 \ref\key 4
  • H. Brezis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris (1983) \ref\key 5
  • H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals , Proc. Amer. Math. Soc., 88 (1983), 486–490 \ref\key 6
  • H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent , Comm. Pure Appl. Math., 36 (1983), 437–477 \ref\key 7
  • J. Chabrowski, Degenerate elliptic equation involving a subcritical Sobolev exponent , Portugal. Math., 53 (1996), 167–178 \ref\key 8
  • I. Ekeland, Nonconvex minimization problems , Bull. Amer. Math. Soc., 1(1979), 443–473 \ref\key 9
  • S. G. Mikhlin, On applicability of a variational method to certain degenerate elliptic equations , Dokl. Akad. Nauk SSSR (New Series), 91(1953), 723–726, (Russian) \ref\key 10 ––––, Degenerate elliptic equations , Vestnik Leningrad Univ., 9(1954), 19–48, (Russian) \ref\key 11
  • M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators , Ann. Mat. Pura Appl., 80 (1968), 1–122 \ref\key 12
  • D. Passaseo, Some concentration phenomena in degenerate semilinear elliptic problems , Nonlinear Anal., 24(1995), 1011–1025 \ref\key 13
  • E. W. Stredulinsky, Weighted Inequalities and Degenerate Elliptic Partial Differential Equations, Springer-Verlag, Berlin, New York (1984) \ref\key 14
  • M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems , Manuscripta Math., 32(1980), 335–364 \ref\key 15
  • G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponents , Ann. Inst. H. Poincaré, Analyse Non Linéaire, 9(1992), 281–304