Topological Methods in Nonlinear Analysis

An existence result for a class of quasilinear elliptic boundary value problems with jumping nonlinearities

Kanishka Perera

Full-text: Open access

Abstract

We establish an existence result for a class of quasilinear elliptic boundary value problems with jumping nonlinearities using variational arguments. First we calculate certain homotopy groups of sublevel sets of the asymptotic part of the variational functional. Then we use these groups to show that the full functional admits a linking geometry and hence a min-max critical point.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 20, Number 1 (2002), 135-144.

Dates
First available in Project Euclid: 2 August 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1470138204

Mathematical Reviews number (MathSciNet)
MR1940534

Zentralblatt MATH identifier
1200.35075

Citation

Perera, Kanishka. An existence result for a class of quasilinear elliptic boundary value problems with jumping nonlinearities. Topol. Methods Nonlinear Anal. 20 (2002), no. 1, 135--144. https://projecteuclid.org/euclid.tmna/1470138204


Export citation

References

  • A. Bonnet, A deformation lemma on a $C^1$-manifold , Manuscripta Math., 81 , 339–359 (1993) \ref\no2
  • F. Browder, Nonlinear eigenvalue problems and group invariance , Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. of Chicago, Chicago, Ill., 1968), 1–58, Springer, New York (1970) \ref\no3
  • N. Các, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue , J. Differential Equations, 80 , 379–404 (1989) \ref\no4
  • M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučí k spectrum for the $p$-Laplacian , J. Differential Equations, 159 , 212–238 (1999) \ref\no5
  • M. Cuesta and J.-P. Gossez, A variational approach to nonresonance with respect to the Fučik spectrum , Nonlinear Anal., 19 , 487–500 (1992) \ref\no6
  • E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations , Proc. Roy. Soc. Edinburgh Sect. A, 76 , 283–300 (1976/77); Corrigendum: Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 15 \ref\no7 ––––, Remarks on jumping nonlinearities , Topics in Nonlinear Analysis, 101–116, Birkhäuser, Basel (1999) \ref\no8
  • E. N. Dancer and K. Perera, Some remarks on the Fučí k spectrum of the $p$-Laplacian and critical groups , J. Math. Anal. Appl., 254 , 164–177 (2001) \ref\no9
  • P. Drábek, Solvability and bifurcations of nonlinear equations , Longman Scientific & Technical, Harlow (1992) \ref\no10
  • P. Drábek and S. Robinson, Resonance problems for the $p$-Laplacian. , J. Funct. Anal., 169 , 189–200 (1999) \ref\no11
  • D. de Figueiredo and J.-P. Gossez, On the first curve of the Fučik spectrum of an elliptic operator , Differential Integral Equations, 7 , 1285–1302 (1994) \ref\no12
  • S. Fučík, Boundary value problems with jumping nonlinearities , Časopis P\v est. Mat., 101 , 69–87 (1976) \ref\no13
  • T. Gallouët and O. Kavian, Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini , Ann. Fac. Sci. Toulouse Math. (5), 3 , 201–246 (1981, 1982) \ref\no14
  • N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge (1993) \ref\no15
  • A. Lazer, Introduction to multiplicity theory for boundary value problems with asymmetric nonlinearities , Partial differential equations (Rio de Janeiro, 1986), 137–165, Springer, Berlin (1988) \ref\no16
  • A. Lazer and P. McKenna, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues , Comm. Partial Differential Equations, 10 , 107–150 (1985) \ref\no17 ––––, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues II , Comm. Partial Differential Equations, 11 , 1653–1676 (1986) \ref\no18
  • S. J. Li, K. Perera, and J. B. Su, On the role played by the Fučí k spectrum in the determination of critical groups in elliptic problems where the asymptotic limits may not exist , Nonlinear Anal., 49 , 603–611 (2002) \ref\no19
  • P. Lindqvist, On the equation ${\divg}(\vert \nabla u\vert \sp {p-2}\nabla u)+\lambda\vert u\vert \sp {p-2}u=0$ , Proc. Amer. Math. Soc., 109 , 157–164 (1990); Addendum: Proc. Amer. Math. Soc., 116 (1992), 583–584 \ref\no20
  • C. Magalhães, Semilinear elliptic problem with crossing of multiple eigenvalues , Comm. Partial Differential Equations, 15 , 1265–1292 (1990) \ref\no21
  • C. Margulies and W. Margulies, An example of the Fučik spectrum , Nonlinear Anal., 29 , 1373–1378 (1997) \ref\no22
  • K. Perera, On the Fučí k spectrum of the $p$-Laplacian , NoDEA Nonlinear Differential Equations Appl., to appear \ref\no23
  • K. Perera and M. Schechter, Type \rom(II) regions between curves of the Fučí k spectrum and critical groups, Topol. Methods Nonlinear Anal., 12 , 227–243 (1998) \ref\no24 ––––, A generalization of the Amann–Zehnder theorem to nonresonance problems with jumping nonlinearities , NoDEA Nonlinear Differential Equations Appl., 7 , 361–367 (2000) \ref\no25 ––––, The Fučí k spectrum and critical groups , Proc. Amer. Math. Soc., 129 , 2301–2308 (2001) \ref\no26
  • M. Schechter, The Fučí k spectrum , Indiana Univ. Math. J., 43 , 1139–1157 (1994)