Topological Methods in Nonlinear Analysis

Perturbing fully nonlinear second order elliptic equations

Philippe Delanoë

Full-text: Open access

Abstract

We present two types of perturbations with reverse effects on some scalar fully nonlinear second order elliptic differential operators: on the other hand, first order perturbations which destroy the global solvability of the Dirichlet problem, in smooth bounded domains of $\mathbb R^n$; on the other hand, an integral perturbation which restore the local solvability, on compact connected manifolds without boundary.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 20, Number 1 (2002), 63-75.

Dates
First available in Project Euclid: 2 August 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1470138200

Mathematical Reviews number (MathSciNet)
MR1940530

Zentralblatt MATH identifier
1235.35114

Citation

Delanoë, Philippe. Perturbing fully nonlinear second order elliptic equations. Topol. Methods Nonlinear Anal. 20 (2002), no. 1, 63--75. https://projecteuclid.org/euclid.tmna/1470138200


Export citation

References

  • Th. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité , J. Funct. Anal., 57 , 143–153 (1984) \ref ––––, Nonlinear Analysis on Manifolds. Monge–Ampère Equations, Springer–Verlag (1982) \ref
  • A. L. Besse, Einstein Manifolds, Springer–Verlag (1987) \ref
  • L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations III: functions of the eigenvalues of the hessian , Acta Math., 155 , 261–301 (1985) \ref
  • Ph. Delano\" e, Equations du type Monge–Ampère sur les variétés riemanniennes compactes, II , J. Funct. Anal., 41 , 341–353 (1981) \ref ––––, Equations du type Monge–Ampère sur les variétés riemanniennes compactes, III , J. Funct. Anal., 45 , 403–430 (1982) \ref ––––, Local inversion of elliptic problems on compact manifolds , Math. Japon., 35 , 679–692 (1990) \ref ––––, Sur l'analogue presque-complexe de l'équation de Calabi–Yau , Osaka J. Math., 33 , 829–846 (1996) \ref ––––, Hessian equations on compact non-negatively curved riemannian manifolds , Calc. Var. (2002), to appear \ref
  • D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Springer–Verlag (1983) \ref
  • T. Kato, Perturbation Theory for Linear Operators, Springer–Verlag (1980) \ref
  • W. Rudin, Functional Analysis, McGraw-Hill (1973)