Topological Methods in Nonlinear Analysis

A Palais-Smale approach to Sobolev subcritical operators

Huei-li Lin, Hwai-chiuan Wang, and Tsung-fang Wu

Full-text: Open access

Abstract

In this article, we use Palais-Smale approaches to describe the achieved and nonachieved domains. We characterizes the achieved domain by the existence of a ground state solution for the energy functional $J$ in $\Omega$.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 20, Number 2 (2002), 393-407.

Dates
First available in Project Euclid: 1 August 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1470081181

Mathematical Reviews number (MathSciNet)
MR1962227

Zentralblatt MATH identifier
1030.35032

Citation

Lin, Huei-li; Wang, Hwai-chiuan; Wu, Tsung-fang. A Palais-Smale approach to Sobolev subcritical operators. Topol. Methods Nonlinear Anal. 20 (2002), no. 2, 393--407. https://projecteuclid.org/euclid.tmna/1470081181


Export citation

References

  • R. A. Adams, Sobolev space, Academic Press, New York (1975) \ref\key 2
  • A. Bahri and P. L. Lions, On the existence of positive solutions of semilinear elliptic equations in unbounded domains , Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365–413 \ref\key 3
  • H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of ground state , Arch. Rat. Mech. Anal., 82 (1983), 313–345 \ref\key 4
  • H. Brezis and L. Nirenberg, Remarks on finding critical point , Comm. Pure Appl. Math., 44 (1991), 939–963 \ref\key 5
  • J. Chabrowski, Weak Convergence Methods for Semilinear Elliptic Equations, World Scientific (1999) \ref\key 6
  • K. J. Chen and H. C. Wang, A necessary and sufficient condition for Palais–Smale conditions , SIAM J. Math. Anal., 31 (1999), 154–165 \ref\key 7
  • M. C. Chen, H. L. Lin and H. C Wang, Vitali convergence theorem and Palais–Smale condition , to appear, Differential Integral Equations \ref\key 8
  • M. A. Del Pino and P. L Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains , Calc. Var. Partial Differential Equations, 4 (1996), 121–137 \ref\key 9 ––––, Least energy solutions for elliptic equations in unbounded domains , Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 195–208 \ref\key 10
  • M. J. Esteban and P. L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domains , Proc. Roy. Soc. Edinburgh Sect. A, 93 (1982), 1–12 \ref\key 11
  • P. C. Fife, Mathematical aspects of reacting and diffusing systems , Springer Lecture Notes in Biomath., 28 (1979) \ref\key 12
  • P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Boston, London, Melbone (1985) \ref\key 13
  • W. C. Lien, S. Y. Tzeng and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains , Differential Integral Equations, 6 (1993), 1281–1298 \ref\key 14
  • P. L. Lions, The concentration-compactness principle in the calculus of variations The locally compact case \romI, \romII, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 1 (1984), 109–145, 223–283 \ref\key 15 ––––, The concentration-compactness principle in the calculus of variations. The limit case \romI, \romII, Rev. Mat. Iberoamericana, 1 (l985), No. 1, 145-201, No. 2, 45–121. \ref\key 16
  • J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems , Appl. Math. Sci., 74 (1989) \ref\key 17
  • P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, Amer. Math. Soc. (1986) \ref\key 18
  • J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer–Verlag (1983) \ref\key 19
  • M. Struwe, Variational Methods, Springer–Verlag, Berlin–Heidelberg–New York, second edition (1996) \ref\key 20
  • C. A. Stuart, Bifurcation in $L^{p}(\Bbb{R}^{N})$ for a semilinear elliptic equation , Proc. London Math. Soc., 45 (1982), 169–192 \ref\key 21
  • H. C. Wang, A Palais–Smale approach to problems in Esteban–Lions domains with holes , Trans. Amer. Math. Soc., 352 (2000), 4237–4256 \ref\key 22
  • M. Willem, Minimax Theorems, Birkhäuser, Boston (1996)