Abstract
We consider a family of non-autonomous reaction-diffusion equations $$ u_t=\sum_{i,j=1}^N a_{ij}(\omega t)\partial_i\partial_j u+f(\omega t,u)+ g(\omega t,x), \quad x\in\mathbb R^N \tag{$\text{\rm E}_\omega$} $$ with almost periodic, rapidly oscillating principal part and nonlinear interactions. As $\omega\to \infty$, we prove that the solutions of $(\text{\rm E}_\omega)$ converge to the solutions of the averaged equation $$ u_t=\sum_{i,j=1}^N \overline a_{ij}\partial_i\partial_j u+\overline f(u)+ \overline g(x), \quad x\in\mathbb R^N. \tag{$\text{\rm E}_\infty$} $$ If $f$ is dissipative, we prove existence and upper-semicontinuity of attractors for the family (E$_\omega$) as $\omega\to\infty$.
Citation
Francesca Antoci. Martino Prizzi. "Attractors and global averaging of non-autonomous reaction-diffusion equations in $\mathbb R^N$." Topol. Methods Nonlinear Anal. 20 (2) 229 - 259, 2002.
Information