Topological Methods in Nonlinear Analysis

Geodesics in conical manifolds

Marco Ghimenti

Full-text: Open access

Abstract

The aim of this paper is to extend the definition of geodesics to conical manifolds, defined as submanifolds of ${\mathbb R}^n$ with a finite number of singularities. We look for an approach suitable both for the local geodesic problem and for the calculus of variation in the large. We give a definition which links the local solutions of the Cauchy problem (1.1) with variational geodesics, i.e. critical points of the energy functional. We prove a deformation lemma (Theorem 2.2) which leads us to extend the Lusternik-Schnirelmann theory to conical manifolds, and to estimate the number of geodesics (Theorem 3.4 and Corollary 3.5). In Section 4, we provide some applications in which conical manifolds arise naturally: in particular, we focus on the brachistochrone problem for a frictionless particle moving in $S^n$ or in ${\mathbb R}^n$ in the presence of a potential $U(x)$ unbounded from below. We conclude with an appendix in which the main results are presented in a general framework.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 25, Number 2 (2005), 235-261.

Dates
First available in Project Euclid: 23 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1466705108

Mathematical Reviews number (MathSciNet)
MR2154427

Zentralblatt MATH identifier
1080.58013

Citation

Ghimenti, Marco. Geodesics in conical manifolds. Topol. Methods Nonlinear Anal. 25 (2005), no. 2, 235--261. https://projecteuclid.org/euclid.tmna/1466705108


Export citation

References

  • A. Canino and M. Degiovanni, Nonsmooth critical point theory and quasilinear elliptic equations , Topological Methods in Differential Equations and inclusions (Montreal, PQ, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 472 (1995), 1–50 \ref\key 2
  • J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation proprieties for continuous functionals and critical point theory , Topol. Methods Nonlinear Anal., 1(1993), 151–171 \ref\key 3
  • M. Degiovanni, Nonsmooth critical point theory and applications , Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996), 30(1997), 89–99 \ref\key 4
  • M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals , Ann. Mat. Pura Appl. (4), 167(1994), 73–100 \ref\key 5
  • M. Degiovanni and L. Morbini, Closed geodesics with Lipschitz obstacle , J. Math. Anal. Appl., 233(1999), 767–789 \ref\key 6
  • E. R. Fadell and S. Y. Husseini, Category of loop spaces of open subsets in Euclidean space , Nonlinear Anal., 17(1991), 1153–1161 \ref\key 7
  • M. G. Ghimenti, Geodesics in conical manifolds , Phd thesis, Università degli studi di Pisa, Dipartimento di Matematica (2004) \ref\key 8
  • W. Klingenberg, Lectures on closed geodesics , Springer–Verlag, Berlin (1978, Grundlehren der Mathematischen Wissenschaften, 230 ) \ref\key 9
  • L. A. Lusternik and L. G. Schnirelmann, Méthodes topologiques dans les problèmes variationnels, Hermann, Paris (1934) \ref\key 10
  • M. Marzocchi and L. Morbini, Periodic solutions of Lagrangian systems with Lipschitz obstacle , Nonlinear Anal., 49(2002), 177–195 \ref\key 11
  • A Marino and D. Scolozzi, Geodetiche con obstacolo , Boll. Un. Mat. Ital. B (6), 2(1983), 1–31, (Italian) \ref\key 12
  • J. Nash, The imbedding problem for Riemannian manifolds , Ann. of Math. (2), 63(1956), 20–63 \ref\key 13
  • R. S. Palais, Homotopy theory of infinite dimensional manifolds , Topology, 5(1966), 1–16 \ref\key 14 ––––, Lusternik–Schnirelman theory on Banach manifolds , Topology, 5(1966), 115–132 \ref\key 15
  • P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems , Eigenvalues of Non-Linear Problems (G. Prodi, ed.), Centro Internazionale Matematico Estivo (C.I.M.E.), Edizioni Cremonese, Roma (1974)