Topological Methods in Nonlinear Analysis

Boundary value problems for first order systems on the half-line

Patric J. Rabier and Charles A. Stuart

Full-text: Open access


We prove existence theorems for first order boundary value problems on $(0,\infty)$, of the form $\dot{u}+F(\cdot,u)=f$, $Pu(0)=\xi$, where the function $F=F(t,u)$ has a $t$-independent limit $F^{\infty}(u)$ at infinity and $P$ is a given projection. The right-hand side $f$ is in $L^{p} ((0,\infty),{\mathbb R}^{N})$ and the solutions $u$ are sought in $W^{1,p}((0,\infty),{\mathbb R}^{N})$, so that they tend to $0$ at infinity. By using a degree for Fredholm mappings of index zero, we reduce the existence question to finding a priori bounds for the solutions. Nevertheless, when the right-hand side has exponential decay, our existence results are valid even when the governing operator is not Fredholm.

Article information

Topol. Methods Nonlinear Anal., Volume 25, Number 1 (2005), 101-133.

First available in Project Euclid: 23 June 2016

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Rabier, Patric J.; Stuart, Charles A. Boundary value problems for first order systems on the half-line. Topol. Methods Nonlinear Anal. 25 (2005), no. 1, 101--133.

Export citation


  • H. Amann, Ordinary Differential Equations, Studies in Mathematics, de Gruyter, Berlin (1990) \ref\key 2
  • H. Brézis, Analyse Fonctionnelle, Masson, Paris (1983) \ref\key 3
  • R. Caccioppoli, Sulle corrispondenze funzionali inverse diramate: teoria generale e applicazioni ad alcune equazioni funzionali nonlineari e al problema di Plateau \romI, II, Rend. Accad. Naz. Lincei, 24 (1936), 258–263, 416–421 ;, Opere Scelte, 2 , Edizioni Cremonese, 157–177, Roma (1963) \ref\key 4
  • M. Cecchi, M. Furi, M. Marini and M. P. Pera, Fredholm linear operators associated with ordinary differential equations on noncompact intervals , Electron. J. Differential Equations, 44 (1999), 16 pp.. (electronic) \ref\key 5
  • P.-O. Hsieh and Y. Sibuya, Basic Theory of Ordinary Differential Equations, Springer–Verlag, Berlin (1999) \ref\key 6
  • J. L. Massera and J. J. Shäffer, Linear Differential Equations and Function spaces, Academic Press, New York (1966) \ref\key 7
  • J. M. Morris, Doctoral dissertation , University of Pittsburgh. in preparation \ref\key 8
  • K. J. Palmer, Exponential dichotomies and transversal homoclinic points , J. Differential Equations, 55 (1984), 225–256 \ref\key 9 ––––, Exponential dichotomies and Fredholm operators , Proc. Amer. Math. Soc., 104 (1988), 149–156 \ref\key 10
  • J. Pejsachowicz and P. J. Rabier, Degree theory for $C^{1}$ Fredholm mappings of index $0$ , J. Anal. Math., 76 (1998), 289–319 \ref\key 11
  • P. J. Rabier, Semigroups, Fredholm operators and the asymptotic and boundary behavior of solutions of \romPDEs, J. Differential Equations, 193 (2003), 460–480 \ref\key 12
  • P. J. Rabier and C. A. Stuart, A Sobolev space approach to boundary value problems on the half-line , Comm. Contemp. Math., to appear