Topological Methods in Nonlinear Analysis

A Morse index theorem for perturbed geodesics on semi-Riemannian manifolds

Monica Musso, Jacobo Pejsachowicz, and Alessandro Portaluri

Full-text: Open access


Perturbed geodesics are trajectories of particles moving on a semi-Riemannian manifold in the presence of a potential. Our purpose here is to extend to perturbed geodesics on semi-Riemannian manifolds the well known Morse Index Theorem. When the metric is indefinite, the Morse index of the energy functional becomes infinite and hence, in order to obtain a meaningful statement, we substitute the Morse index by its relative form, given by the spectral flow of an associated family of index forms. We also introduce a new counting for conjugate points, which need not to be isolated in this context, and prove that our generalized Morse index equals the total number of conjugate points. Finally we study the relation with the Maslov index of the flow induced on the Lagrangian Grassmannian.

Article information

Topol. Methods Nonlinear Anal., Volume 25, Number 1 (2005), 69-99.

First available in Project Euclid: 23 June 2016

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Musso, Monica; Pejsachowicz, Jacobo; Portaluri, Alessandro. A Morse index theorem for perturbed geodesics on semi-Riemannian manifolds. Topol. Methods Nonlinear Anal. 25 (2005), no. 1, 69--99.

Export citation


  • R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin–Cummings, Ink. Massachusetts (1978) \ref\key 2
  • I. V. Arnold, On a characteristic class enetring into condition of quantization , Funct. Anal. Appl. (1967), 1–13 \ref\key 3
  • J. Avron, R. Seiler and B. Simon, The index of a pair of projections , J. Funct. Anal., 120 (1994), 220–237 \ref\key 4
  • M. F. Atiyah, Anomalies and index theory , Lect. Notes in Physics, 208 (1984), 313–322 \ref\key 5
  • M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry \romIII, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99 \ref\key 6
  • J. K. Beem, P. E. Ehrlich and K. L. Easley, Global Lorentzian Geometry, Mercel Dekker, Inc. New York and Basel (1996) \ref\key 7
  • B. Booss and K. Wojciechowski, Desuspension of splitting elliptic symbols \romI, Ann. Global Anal. Geom., 3 (1985), 337–383 \ref\key 8
  • J. C. Correa Eidam, A. L. Pereira, P. Piccione and D. V. Tausk, On the equality between The Maslov index and the spectral index for semi-Riemannian Jacobi Operator , J. Math. Anal. Appl., 268 (2002), 564–589 \ref\key 9
  • K. Deimling, Nonlinear Functional Analysis, Springer–Verlag (1985) \ref\key 10
  • J. J. Duistermaat, On the Morse index in variational calculus , Adv. Math., 21 (1976), 173–195 \ref\key 11
  • P. M. Fitzpatrick, J. Pejsachowicz and L. Recht, Spectral flow and bifurcation of critical points of strongly-indefinite functional. Part \romI. General theory, J. Funct. Anal., 162 (1999), 52–95 \ref\key 12
  • A. Floer, Morse theory for Lagrangian intersections , J. Differentil Geom., 28 (1988), 513–547 \ref\key 13 ––––, Relative Morse index for the symplectic action , Comm. Pure Appl. Math., 41 (1989), 335–356 \ref\key 14
  • F. Gesztesy, B. Simon and G. Teschl, Zeros of the Wronskian and renormalized oscillation theory , Amer. J. Math., 118 (1996), 571–594 \ref\key 15
  • R. Giambó, P. Piccione and A. Portaluri, On the Maslov index of symplectic paths that are not transversal to the Maslov cycle. Semi-Riemannian index theorems in the degenerate case , preprint 2003 (ArXiv: math.DG/0306187) \ref\key 16
  • F. Giannoni, A. Masiello, P. Piccione and D. V. Tausk, A generalized index theorem for Morse–Sturm systems and applications to semi-Riemannian geometry , Asian J. Math., 5 (2001), 441–472 \ref\key 17
  • I. Gohberg, S. Goldberg and M. Kaashoek, Classes of Linear operators, 1 , Birkhauser–Verlag, Basel, Boston, Berlin (1990) \ref\key 18
  • I. C. Gohberg and E. I. Sigal, An operator generalization of the logarithmic residue theorem and the theorem of Rouchè , Math. USSR Sbornik, 13 (1971), 603–624 \ref\key 19
  • A. D. Helfer, Conjugate points on space like geodesics or pseudo-self-adjoint Morse–Sturm–Liouville systems , Pacific J. Math., 164 (1994), 321–340 \ref\key 20
  • J. Ize, Obstruction theory and multiparameter Hopf bifurcation , Trans. Amer. Math. Soc., 289 (1988), 757–792 \ref\key 21
  • T. Kato, Perturbation theory for linear operators , Grundlehren der Mathematischen Wissenschaften, 132 , Springer–Verlag (1980) \ref\key 22
  • H. Kielh\t ofer, A bifurcation theorem for potential operators , J. Funct. Anal., 77 (1988), 1–8 \ref\key 23
  • W. Klingenberg, Closed geodesics on Riemannian manifolds , CBMS Regional Conf. Ser. in Math., 53 (1983) \ref\key 24
  • M. A. Krasnosel'ski\i and P. P. Zabreĭko, Geometrical Methods of Nonlinear Analysis, Springer–Verlag (1984) \ref\key 25
  • M. A. Krasnosel'skiĭ, A. I. Perov, A. I. Povolotskiy and P. P. Zabreĭko, Plane Vector Field, Academic Press (1966) \ref\key 26
  • M. Lesch and J. Tolksdorff, On the determinant of one dimensional elliptic boundary value problems , Comm. Math. Phys., 193 (1998), 643–660 \ref\key 27
  • F. Mercuri, P. Piccione and D. Tausk, Stability of the focal and the geometric index in semi-Riemannian geometry via the Maslov index , Pacific J. Math., 206 (2002), 375–400 \ref\key 28
  • M. Morse, Variational Analysis, Wiley (1973) \ref\key 29
  • M. Musso, J. Pejsachowicz and A. Portaluri, Bifurcation of perturbed geodesics on semi Riemannian manifolds , Dip. di Matematica Politecnico di Torino, Rapp. interno No. 5 (2004) \ref\key 30
  • L. Nicolaescu, Generalized symplectic geometries and the index of families of elliptic problems , Mem. Amer. Math. Soc., 128 (1997) \ref\key 31
  • B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York (1983) \ref\key 32
  • P. Piccione, A. Portaluri and D. V. Tausk, Spectral flow, Maslov index and bifurcation of semi-Riemannian geodesics , to appear, Ann. Global Anal. Geom. \ref\key 33
  • P. Piccione and D. V. Tausk, The Maslov index and a generalized Morse index theorem for non-positive definite metrics , C. R. Acad. Sci. Paris Sér. 1, 331 (2000), 385–389 \ref\key 34
  • J. Robbin and D. Salamon, The spectral flow and the Maslov index , Bull. London Math. Soc., 27 (1995), 1–33 \ref\key 35 ––––, The Maslov index for paths , Topology, 32 (1993), 827–844 \ref\key 36
  • J. Weber, Perturbed geodesics: index and trasversality , Math. Z., 241 (2002), 45–81 \ref\key 37
  • Chaofeng Zhu, The Morse index theorem for regular Lagrangian systems , preprint 2001 (ArXiv: math.DG/0109117)