Topological Methods in Nonlinear Analysis

A set-valued approach to hemivariational inequalities

Alexandru Kristály and Csaba Varga

Full-text: Open access

Abstract

Let $X$ be a Banach space, $X^*$ its dual and let $T\colon X\to L^p(\Omega ,\mathbb {R}^k)$ be a linear, continuous operator, where $p, k\ge 1$, $\Omega $ being a bounded open set in $\mathbb {R}^N$. Let $K$ be a subset of $X$, ${\mathcal A}\colon K\rightsquigarrow X^*$, $G\colon K\times X\rightsquigarrow \mathbb {R}$ and $F\colon \Omega \times \mathbb {R}^k\times \mathbb {R}^k\rightsquigarrow \mathbb {R}$ set-valued maps with nonempty values. Using mainly set-valued analysis, under suitable conditions on the involved maps, we shall guarantee solutions to the following inclusion problem:

Find $u\in K$ such that, for every $v\in K$ $$ \sigma ({\mathcal A}(u),v-u)+G(u,v-u)+ \int_\Omega F(x,T{u}(x),T{v}(x)-T{u}(x))dx \subseteq \mathbb {R}_+. $$ In particular, well-known variational and hemivariational inequalities can be derived.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 24, Number 2 (2004), 297-307.

Dates
First available in Project Euclid: 23 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1466704920

Mathematical Reviews number (MathSciNet)
MR2114911

Zentralblatt MATH identifier
1060.49009

Citation

Kristály, Alexandru; Varga, Csaba. A set-valued approach to hemivariational inequalities. Topol. Methods Nonlinear Anal. 24 (2004), no. 2, 297--307. https://projecteuclid.org/euclid.tmna/1466704920


Export citation

References

  • J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, Basel, Berlin (1990) \ref\key 2
  • R. J. Aumann, Integral of set-valued maps , J. Math. Anal. Appl., 12(1965), 1–12 \ref\key 3
  • F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann., 177(1968), 283–301 \ref\key 4
  • F. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York(1983) \ref\key 5
  • K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann., 142 (1961), 305–310 \ref\key 6
  • M. Frigon, On a critical point theory for multivalued functionals and applications to partial differential inclusions, Nonlinear Anal., 31 (1998), 735–753 \ref\key 7
  • G. J. Hartman and G. Stampacchia, On some nonlinear elliptic differential equations, Acta Math., 115 (1966), 271–310 \ref\key 8
  • D. Motreanu and P. D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the solutions of Hemivariational Inequalities, Kluwer Academic Publishers, Dordrecht, Boston, London (1999) \ref\key 9
  • Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, New York(1995) \ref\key 10
  • P. D. Panagiotopoulos, M. Fundo and V. Rădulescu, Existence theorems of Hartman–Stampacchia type for hemivariational inequalities and applications, J. Global Optim., 15(1999), 41–54 \ref\key 11
  • N. K. Ribarska, Ts. Y. Tsachev and M. I. Krastanov, A note on “On a critical point theory for multivalued functionals and applications to partial differential inclusions” , Nonlinear Anal., 43(2001), 153–158 \ref\key 12
  • M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996