Open Access
2004 A set-valued approach to hemivariational inequalities
Alexandru Kristály, Csaba Varga
Topol. Methods Nonlinear Anal. 24(2): 297-307 (2004).

Abstract

Let $X$ be a Banach space, $X^*$ its dual and let $T\colon X\to L^p(\Omega ,\mathbb {R}^k)$ be a linear, continuous operator, where $p, k\ge 1$, $\Omega $ being a bounded open set in $\mathbb {R}^N$. Let $K$ be a subset of $X$, ${\mathcal A}\colon K\rightsquigarrow X^*$, $G\colon K\times X\rightsquigarrow \mathbb {R}$ and $F\colon \Omega \times \mathbb {R}^k\times \mathbb {R}^k\rightsquigarrow \mathbb {R}$ set-valued maps with nonempty values. Using mainly set-valued analysis, under suitable conditions on the involved maps, we shall guarantee solutions to the following inclusion problem:

Find $u\in K$ such that, for every $v\in K$ $$ \sigma ({\mathcal A}(u),v-u)+G(u,v-u)+ \int_\Omega F(x,T{u}(x),T{v}(x)-T{u}(x))dx \subseteq \mathbb {R}_+. $$ In particular, well-known variational and hemivariational inequalities can be derived.

Citation

Download Citation

Alexandru Kristály. Csaba Varga. "A set-valued approach to hemivariational inequalities." Topol. Methods Nonlinear Anal. 24 (2) 297 - 307, 2004.

Information

Published: 2004
First available in Project Euclid: 23 June 2016

zbMATH: 1060.49009
MathSciNet: MR2114911

Rights: Copyright © 2004 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.24 • No. 2 • 2004
Back to Top