Topological Methods in Nonlinear Analysis

Relative homological linking in critical point theory

Alexandre Girouard

Full-text: Open access

Abstract

A relative homological linking of pairs is proposed. It is shown to imply homotopical linking, as well as earlier non-relative notion of homological linkings. Using Morse theory we prove a simple "homological linking principle", thereby generalizing and simplifying many well known results in critical point theory.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 30, Number 2 (2007), 211-221.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463150090

Mathematical Reviews number (MathSciNet)
MR2387825

Zentralblatt MATH identifier
1149.58006

Citation

Girouard, Alexandre. Relative homological linking in critical point theory. Topol. Methods Nonlinear Anal. 30 (2007), no. 2, 211--221. https://projecteuclid.org/euclid.tmna/1463150090


Export citation

References

  • A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications , J. Funct. Anal., 14(1973), 349–381 \ref\key 2
  • V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals , Invent. Math, 52(1979, no. 3), 241–273 \ref\key 3
  • V. Benci, A new approach to the Morse–Conley theory and some applications , Ann. Mat. Pura Appl. (4), 158 (1991), 231–305 \ref\key 4
  • Kung-Ching Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston (1993) \ref\key 5
  • E. Fadell, The Equivariant Lusternik–Schnirelmann Method for Invariant Functionals and Relative Cohomological Index Theories. Méthodes topologiques en analyse non linàire (A. Granas, ed.), SMS, 95 , Les presses de l'Universitè de Montrèal, Montrèal (1985) \ref\key 6
  • M. Frigon, On a new notion of linking and application to elliptic problems at resonance , J. Differential Equations, 153 (1999), 96–120, no. 1 \ref\key 7
  • A. Girouard, Enlacement Relatif Homologique Mémoire de Maîtrise, Université de Montréal (2002) \ref\key 8
  • J.-N. Corvellec, Morse theory for continuous functionals , J. Math. Anal. Appl., 196(1995), 1050–1072, no. 3 \ref\key 9
  • J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems , Appl. Math. Sci., 74 , Springer–Verlag, New York (1989) \ref\key 10
  • W. M. Ni, Some minimax principles and their applications in nonlinear elliptic equations , J. Anal. Math., 37(1980), 248–275 \ref\key 11
  • K. Perera, Critical groups of pairs of critical points produced by linking subsets , J. Differential Equations, 140(1997), 142–160, no. 1 \ref\key 12
  • P. H. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations , Nonlinear Analysis, A collection of papers in honor of Erich Rothe, Academic Press, New York(1978) \ref\key 13
  • M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston (1999)