Topological Methods in Nonlinear Analysis

Multiplicity results for some quasilinear elliptic problems

Francisco Odair de Paiva, João Marcos do Ó, and Everaldo Souto de Medeiros

Full-text: Open access

Abstract

In this paper, we study multiplicity of weak solutions for the following class of quasilinear elliptic problems of the form $$ -\Delta_p u -\Delta u = g(u)-\lambda |u|^{q-2}u \quad \text{in } \Omega \text{ with } u=0 \text{ on } \partial\Omega, $$ where $ \Omega $ is a bounded domain in ${\mathbb{R}}^n $ with smooth boundary $\partial\Omega$, $ 1< q< 2< p\leq n$, $\lambda$ is a real parameter, $\Delta_p u = {\rm div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian and the nonlinearity $g(u)$ has subcritical growth. The proofs of our results rely on some linking theorems and critical groups estimates.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 34, Number 1 (2009), 77-89.

Dates
First available in Project Euclid: 27 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461785685

Mathematical Reviews number (MathSciNet)
MR2581460

Zentralblatt MATH identifier
1183.35107

Citation

de Paiva, Francisco Odair; do Ó, João Marcos; de Medeiros, Everaldo Souto. Multiplicity results for some quasilinear elliptic problems. Topol. Methods Nonlinear Anal. 34 (2009), no. 1, 77--89. https://projecteuclid.org/euclid.tmna/1461785685


Export citation

References

  • H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations , Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4(1980), 539–603 \ref\key 2
  • A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems , J. Funct. Anal., 122(1994), 519–543 \ref\key 3
  • A. Ambrosetti, J. Garcia Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137(1996), 219–242 \ref\key 4
  • A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381 \ref\key 5
  • A. Anane, Simplicitét isolation de la première valeur propre du $p$-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math., 305(1987), 725–728 \ref\key 6
  • V. Benci, P. D'Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Rational Mech. Anal., 154(2000), 297–324 \ref\key 7
  • V. Benci, D. Fortunato and L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension $3$, Rev. Math. Phys., 10(1998), 315–344 \ref\key 8
  • H. Brezis and L. Nirenberg, $H^1$ versus ${\Cal C}^1$ local minimizers, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 465–472 \ref\key 9
  • K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, Boston (1993) \ref\key 10
  • S. Cingolani and M. Degiovanni, Nontrivial solutions for $p$-Laplace equations with right-hand side having $p$-linear growth at infinity, Comm. Partial Differential Equations, 30(2005), 1191–1203 \ref\key 11
  • S. Cingolani and G. Vannella, Critical groups computations on a class of Sobolev Banach spaces via Morse index, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(2003), 271–292 \ref\key 12
  • D. G. de Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours , Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 81 , Published for the Tata Institute of Fundamental Research, Bombay, Springer–Verlag, Berlin (1989) \ref\key 13
  • D. G. de Figueiredo, J. P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452–467 \ref\key 14
  • F. O. de Paiva and E. Massa, Multiple solutions for some elliptic equations with a nonlinearity concave at the origin , Nonlinear Anal., 66 (2007), 2940–2946 \ref\key 15
  • J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, \rom Vol. I Elliptic equations, Research Notes in Mathematics, 106 , Pitman, Boston, MA (1985) \ref\key 16
  • J. M. do Ó, Existence of solutions for quasilinear elliptic equations, J. Math. Anal. Appl., 207(1997), 104–126 \ref\key 17
  • J. Garcia Azorero, I. Peral and J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2(2000), 385–404 \ref\key 18
  • Z. Guo and Z. Zhang, $W\sp {1,p}$ versus $C\sp 1$ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl., 286(2003), 32–50 \ref\key 19
  • O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968) \ref\key 20
  • G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12(1988), 1203–1219 \ref\key 21
  • K. Perera, Multiplicity results for some elliptical problems with concave nonlinearities , J. Differential Equations, 140(1997), 133–141 \ref\key 22 ––––, Critical groups of pair of critical points produced by linking subsets, J. Differential Equations, 140(1997), 142–160 \ref\key 23
  • P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations , CBMS Regional Conf. Ser. in Math., 65 , Amer. Math. Soc., Providence, RI (1986) \ref\key 24
  • P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations, 8(1983), 773–817 \ref\key 25
  • P. Ubilla, Multiplicity results for quasilinear elliptic equations, Comm. Appl. Nonlinear Anal., 3(1996), 35–49